USER’S GUIDE

Apollo3 and Apollo4 Family
Bluetooth Low Energy®

Ultra-Low Power Apollo SoC Family
A-SOCAPG-UGGAO3EN v1.0

Q) ambiq

Apollo3 and Apollo4 Family BLE User’s Guide

Legal Information and Disclaimers

AMBIQ MICRO INTENDS FORTHE CONTENT CONTAINED IN THE DOCUMENT TO BE ACCURATE AND RELIABLE. THIS
CONTENT MAY, HOWEVER, CONTAIN TECHNICAL INACCURACIES, TYPOGRAPHICAL ERRORS OR OTHER MISTAKES.
AMBIQ MICRO MAY MAKE CORRECTIONS OR OTHER CHANGES TO THIS CONTENT AT ANY TIME. AMBIQ MICRO
AND ITS SUPPLIERS RESERVE THE RIGHT TO MAKE CORRECTIONS, MODIFICATIONS, ENHANCEMENTS,
IMPROVEMENTS AND OTHER CHANGES TO ITS PRODUCTS, PROGRAMS AND SERVICES AT ANY TIME ORTO
DISCONTINUE ANY PRODUCTS, PROGRAMS, OR SERVICES WITHOUT NOTICE.

THE CONTENT IN THIS DOCUMENT IS PROVIDED "AS IS". AMBIQ MICRO AND ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THIS CONTENT FOR ANY PURPOSE AND DISCLAIM ALL
WARRANTIES AND CONDITIONS WITH REGARD TO THIS CONTENT, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED
WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-
INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT.

AMBIQ MICRO DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED
UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF
AMBIQ MICRO COVERING OR RELATING TO THIS CONTENT OR ANY COMBINATION, MACHINE, OR PROCESS TO
WHICH THIS CONTENT RELATE OR WITH WHICH THIS CONTENT MAY BE USED.

USE OF THE INFORMATION IN THIS DOCUMENT MAY REQUIRE A LICENSE FROM A THIRD PARTY UNDER THE
PATENTS OR OTHER INTELLECTUAL PROPERTY OF THAT THIRD PARTY, OR A LICENSE FROM AMBIQ MICRO UNDER
THE PATENTS OR OTHER INTELLECTUAL PROPERTY OF AMBIQ MICRO.

INFORMATION IN THIS DOCUMENT IS PROVIDED SOLELY TO ENABLE SYSTEM AND SOFTWARE IMPLEMENTERS TO
USE AMBIQ MICRO PRODUCTS. THERE ARE NO EXPRESS OR IMPLIED COPYRIGHT LICENSES GRANTED HEREUNDER
TO DESIGN OR FABRICATE ANY INTEGRATED CIRCUITS OR INTEGRATED CIRCUITS BASED ON THE INFORMATION IN
THIS DOCUMENT. AMBIQ MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN. AMBIQ MICRO MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE
SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES AMBIQ MICRO ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT, AND SPECIFICALLY DISCLAIMS ANY
AND ALL LIABILITY, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR INCIDENTAL DAMAGES. “TYPICAL"
PARAMETERS WHICH MAY BE PROVIDED IN AMBIQ MICRO DATA SHEETS AND/OR SPECIFICATIONS CAN AND DO
VARY IN DIFFERENT APPLICATIONS AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL OPERATING
PARAMETERS, INCLUDING “TYPICALS” MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUSTOMER'’S
TECHNICAL EXPERTS. AMBIQ MICRO DOES NOT CONVEY ANY LICENSE UNDER NEITHER ITS PATENT RIGHTS NOR
THE RIGHTS OF OTHERS. AMBIQ MICRO PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS
COMPONENTS IN SYSTEMS INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS
INTENDED TO SUPPORT OR SUSTAIN LIFE, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE
AMBIQ MICRO PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
SHOULD BUYER PURCHASE OR USE AMBIQ MICRO PRODUCTS FOR ANY SUCH UNINTENDED OR UNAUTHORIZED
APPLICATION, BUYER SHALL INDEMNIFY AND HOLD AMBIQ MICRO AND ITS OFFICERS, EMPLOYEES, SUBSIDIARIES,
AFFILIATES, AND DISTRIBUTORS HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND EXPENSES, AND
REASONABLE ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY OR
DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED USE, EVEN IF SUCH CLAIM ALLEGES THAT
AMBIQ MICRO WAS NEGLIGENT REGARDING THE DESIGN OR MANUFACTURE OF THE PART.

A-SOCAPG-UGGAO3EN v1.0 2

Apollo3 and Apollo4 Family BLE User’s Guide

Revision History

Revision Date Description

1.0 January 22, 2024 Initial release

Reference Documents

These reference documents can be accessed on the Ambig Website and/or Content Portal.

Document ID Description

DS-A4BP-* Apollo4 Blue Plus SoC Datasheet

DS-A4B-* Apollo4 Blue SoC Datasheet

DS-A3BP-* Apollo3 Blue Plus SoC Datasheet

DS-A3B-* Apollo3 Blue SoC Datasheet

n/a Apollo4 Blue/Apollo4 Blue Plus SoC 32 MHz Crystal Calibration

n/a Apollo3 Blue SoC/Apollo3 Blue Plus SoC 32 MHz Crystal Calibration

* Indicates to use the latest version of document

A-SOCAPG-UGGAO3EN v1.0 3

https://ambiq.com/resources/
https://contentportal.ambiq.com/login
https://support.ambiq.com/hc/en-us/articles/4415037380109
https://support.ambiq.com/hc/en-us/articles/4418551434765-Apollo3-Blue-SoC-32-MHz-Crystal-Calibration

Apollo3 and Apollo4 Family BLE User’s Guide Table of Contents
Table of Contents
1' Introduction LI X Y] LI X Y] LXXX] (XX [XXX] [XX Y] LI X Y] 7
2. OVEIVIEW .iiiiecccescsssnnsenssnsssssesssasssssses 8
3. Software Stack and Main Functions11
3T LE HOSE STACK oiuieeteiiseiseesiessissssesstssssssssessses 12
3.2 Bluetooth Low Energy in the AmbiqSuite SDK ... nineseisisessesesssessssssssssssnes 12
3.3 Configuring the ATT Maximum Transmission Unit (MTU)ccccemrcmrrnnrnsessessssnsesneens 15
4, Clocking 17
4.1 CIOCK SOUICES ...ceieeereirsininseississessisssssssssassassssssssssssans 17
4.1.1 Configure CLKREQ GPIOrrirrrrississssisssssensssasssssses 17
4.2 ClOCK CONFIQUIALION .ottt ssassssssassansans 19
4.2.1 Configure CLKREQ GPIOeeriiseeiiesissesissesssssssisssssssssssssssssssssssssssssssssssssssasssssssess 19
4.2.2 Initialize CLKREQ INtEITUPTL SEIVICE ettt ssassassassassassessenes 20
4.2.3 Initialize XTAL32ZMHZ Startupcccceveeienesensissnsinsssssssissesses 21
4.2.4 Wakeup Time CONfIGUIAtIONieerrereereeseisssississsissens 22
5.32 MHz Crystal Calibration23
6. Vendor-Specific HCl Commands for BLE Controller 24
6.1 HCIVSCSEIRIPOWEILEVEIEX ...cvurrieeereeeeisiiseisesisssssssssssesses 25
6.2 HCIVSCSEITraCeBIitIMaD ..ot ssss s sss st ssssssssssssssssssssssssssssssssnes 26
6.3 HCIVSCUPAALEFW ...ttt ssss st s ssssssssssesssssssssssssssssssssssssassassasens 27
6.4 HCIVSCREAAREG ..ottt sttt sss s sasesssssssssessessssssessssassssesssssssssessssasens 27
6.5 HCIVSCWITEREQG ettt iessssessessesse st ssssssssssssssssssssessssssasenssassssssssans 28
6.6 HCIVSCGEIDEVICEIA ...ttt sssssssssssssssessesssessssssssssassssssssasssssssasssssssssssenes 28
6.7 HCIVSCUPAAtENVASPArAMcuieeeieeersrsisreisessisstsssssasssassans 29
6.8 HCiVscUpdateLinklayerFEAtUre ... nnseseistseieisesessisssissssesssssssssssasssssssssssenss 29
7.Bluetooth Low Energy MAC Address 30
8. Enabling the BLE Resolvable Private Address Resolution . 32
9. Different Types of Advertising . 38
10. Saving and Managing Peer Credentialsccccceernneeccccccnnnnecccccnnnneecs . 41
11. Adding the Customized Service (CUSTS)cccceccccnnnecccscsnssneecsssnssssecs .. 46
12. L2CAP CoC Feature EXamplecccccccvvccnnennnnneeccccccccccssssnnsssssssssssscaccns . 51
13. Bluetooth Low Energy Controller Firmware Updatecccceecunnnneees . 54

A-SOCAPG-UGGAO3EN v1.0 4

Apollo3 and Apollo4 Family BLE User’s Guide List of Tables

List of Tables

Table 6-1 Overall Vendor-Specific HCl COMMANoveereeerriereresieseniesissseseessssasssssessssssesses 24
Table 6-2 HciVscSetRfPowerLevelEx Parameter Descriptionnieeresinssesnssessnsen. 25
Table 6-3 HciVscSetTraceBitMap Parameter Descriptioneneneenssssinssnssnsisseesssssnsenns 26
Table 6-4 HciVscUpdateFw Parameter DeSCriptionceensinsrnsinsinsensenssssssssssssssssssenes 27
Table 6-5 HciVscReadReg Parameter DeSCriPLioNccnreineeneensesesnensesessessssssesssssssssessessssnss 27
Table 6-6 HciVscWriteReg Parameter DeSCriPLiONoeereneesenreneineisessesesssssessessesssssssssssns 28
Table 6-7 HciVscGetDeviceld Parameter DeSCriptioncinsinsinsinsinsinssssssssssssssssssnes 28
Table 6-8 HciVscUpdateNvdsParam Parameter DeSCriptioneeeecseseinersessessssesensensenns 29
Table 6-9 HciVscUpdateLinklayerFeature Parameter Descriptioneenrenscreeneenenn. 29
Table 9-1 Types Of AQVEILISING ...vvieecrrerrireinrissesssssssssisses 38

A-SOCAPG-UGGAO3EN v1.0 5

Apollo3 and Apollo4 Family BLE User’s Guide List of Figures

List of Figures

Figure 2-1 Apollo4 Bluetooth Low Energy Controller Core and Radio Subsystems 9
Figure 2-2 Apollo4 Buck-enabled Configuration ... 9
Figure 2-3 Block Diagram for the Apollo3 Blue Bluetooth Low Energy Controller 10
Figure 2-4 Apollo3 Blue Buck-enabled Configuration ... 10
Figure 3-1 Software Components in Bluetooth Low Energy Moduleneorrvrrrnreennnne 11
FIGUIE 3-2 LE HOSE SEACK couieeeeeeeieece ittt sssssssssessssssssssesssessssssssssssssssssssssssss 12
Figure 4-1 Configuring CLKREQ GPIOceeeeerireenecrseesssessesssesssessssessssssssessssesssessssessssssssessassssss 18
Figure 4-2 Wake EVENE SEQUENCEceeeeeeeerseretieesseisesssessssssesssessssssssssssssssssssssesssssassssssssssess 18
FIGUIE 10-1 SECUNTY PrOCESS ...ouveieiiiniercreiincseincicssssscsessssssssesssssesssssssssssssssssssessssssssssssssssssssssessss 42
Figure 11-1 The Apollo Blue Series Boards with Fit Example Outputcceeveecveeneerenennne 47
Figure 11-2 Custom Service Added as “Unknown Service”crneeneesennserssesssesseens 50
Figure 12-1 SWO Log with the Watch Example Receivednerensensernecnnennseenenns 53
Figure 13-1 Controller Firmware Update FIOWninecneieieieisenesseisessssessessenns 55
Figure 13-2 SWO Output for the Successful BLE Firmware Updateoeenneenecessecnnennne 56

A-SOCAPG-UGGAO3EN v1.0 6

Introduction

The Apollo4 Blue, Apollo4 Blue Plus, and Apollo4 Blue Lite SoCs have an on-chip Bluetooth Low
Energy® subsystem which provides low-power Bluetooth Low Energy 5.1 connectivity. Simi-
larly, the Apollo3 Blue and Apollo3 Blue Plus provide low-power Bluetooth Low Energy 5.0 con-
nectivity. The purpose of this document is to help the reader understand the Bluetooth Low
Energy subsystem’s operation and the provided functions for the Bluetooth Low Energy mod-
ule in the AmbiqSuite SDK.

NOTE:

= Reference to “Apollo4 Blue” applies to the Apollo4 Blue, Apollo4 Blue
Plus SoC and any future “Blue” versions of the Apollo4 family unless
stated otherwise.

= Reference to “Apollo3 Blue” applies to the Apollo3 Blue, the Apollo3
Blue Plus SoC and any future “Blue” versions of the Apollo4 family
unless stated otherwise.

= Reference to both Apollo3 and Apollo4 Blue families are simply stated
as “the Apollo”in the document.

7 A-SOCAPG-UGGAO3EN v1.0

Overview

The Bluetooth Low Energy subsystem includes an Arm® Cortex®-MO0 based controller, Blue-
tooth Low Energy baseband, modem and a 2.4 GHz transceiver. Communication with, and con-
trol of, the Bluetooth Low Energy controller are implemented through a high-speed SPI
interface. Dedicated data movement hardware enables efficient interface for HCI packet trans-
fers.

The Bluetooth Low Energy controller is operated at 32 MHz and it includes a PLL to generate
the necessary clocking for the Bluetooth Low Energy subsystem. The reference clock for the
PLL can be sourced from either a dedicated external crystal or a single-ended clock input from
the Apollo SoC. Power regulation is supported internally via a buck DCDC regulator and sup-
porting LDO regulators needed to generate all internal voltages for the radio and digital sub-
systems.

Figure 2-1 on page 9 shows a high-level block diagram of the Apollo4 Blue Bluetooth Low
Energy subsystem (controller and radio).

8 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Overview

Figure 2-1: Apollo4 Bluetooth Low Energy Controller Core and Radio Subsystems
Core Sub-System Radio Subsystem

RF RX
Cortex-MO L

MCU
32 MHz

Baseband

o
<
>
i)
(=]
-
—*
-
=3
[}
L

eFlash W'F'
Coexistence

256kB

Figure 2-2 presents a schematic of the Apollo4 Blue BLE Buck circuit required to provide power
to the subsystem. Values for the external components can be found in the Electrical Character-
istics section of the applicable datasheet.

Figure 2-2: Apollo4 Buck-enabled Configuration

Internal Voltages
VDDBH
VDDBH_RF
VDDB —— | BLE BUCK
'Jj 1] |
L | |
VDDBH_SW T_erv\ VDDBH VDDBH_RF | vssB
BLEBUCK
Caiesuck | T Cyoosi_rr

Figure 2-3 on page 10 shows a high-level block diagram of the Apollo3 Blue Bluetooth Low
Energy controller.

9 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Overview

Figure 2-3: Block Diagram for the Apollo3 Blue Bluetooth Low Energy Controller

Core Sub-System Radio Subsystem

Cortex-M0O RF TX/RX
MCU

32 MHz Baseband |

WiFi Coexistence |

Clock Sources
32 MHz RC 32 MHz XTAL .

o
<
hod
(n)]
o
3
-
=
=l
o
=

Figure 2-4 presents a schematic of the Apollo3 Blue BLE Buck circuit required to provide power
to the subsystem. Values for the external components can be found in the Electrical Character-
istics section of the applicable datasheet.

Figure 2-4: Apollo3 Blue Buck-enabled Configuration

Internal Voltages

VDDEBEH

VDCDCRF

vDDB ——] BLE BUCK
.IJ'L i | 1 ™1
VDDBH SW I--I‘v.lfl:}I:lBH LJ‘U’DEDE RF LJ‘I.I".:'»SB
= Lawmisce
;
Cowesuck] T Cocnens
i 1

10 A-SOCAPG-UGGAO3EN v1.0

Software Stack and Main
Functions

This section presents the Bluetooth Low Energy stack and discusses how the module is config-
ured and controlled by software in the AmbiqgSuite SDK.

Figure 3-1 shows the software stack for the Bluetooth Low Energy module.

Figure 3-1: Software Components in Bluetooth Low Energy Module

Bluetooth Low Energy Application

Open Source Cordio Bluetooth Low Energy Stack

Apollod

Standard/Vendor SpecificHCl CMD/EVENT/ACL

HCI/SPI Master(IOM)

Bluetooth Low HCI/SPISlave
Energy
Controller Standard/Vendor Specific HCl CMD/EVENT/ACL

Core Lower Layer Bluetooth Low Energy Stack

Bluetooth Low Energy System API

Radio Event Scheduler

L Bluetooth Low Energy baseband

Third Party

2 AGHz Radio

11 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide

Software Stack and Main Functions

3.1

3.2

LE Host Stack

The LE host stack is as shown in Figure 3-2.

Figure 3-2: LE Host Stack

Application Application (App)
:' ---
] Generic Access Profile Generic Attribute Profile
;
]
Host ; Security Manager Protocol Attribute Protocol
! (ATT)
1
- Logical Link Control and Adaptation Protocol
1 L2CAP,
1
Host Controller Interface
Link Layer (LL)
Controller

LE Physical Layer (PHY)

Multiplexing, package
segmentation and
reassembly

Bluetooth Low Energy in the AmbiqSuite SDK

The Bluetooth Low Energy module configuration and initialization in the
AmbiqgSuite SDK are as described below.

Configuration:

The Bluetooth Low Energy initialization must be run in one task (RadioTask).

Initialization:

The RadioTask initialization is as follows.

= Boot the radio with HciDrvRadioBoot(1).

1. Initialize the SPI module, enable crystals such as XTAL32M and XTAL32K for
the Bluetooth Low Energy Controller.

2. Set the default Bluetooth Low Energy TX output power.

3. Register Bluetooth Low Energy Controller IRQ pin ISR and ClkReq pin ISR.

4. For a cold boot, use the Apollo’s device ID to form Bluetooth address.

12

A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Software Stack and Main Functions

Initialize the main ExactLE stack.

1. Set up timers for the WSF (Wireless Software Foundation) scheduler with
WsfOslnit(), and WsfTimerlnit().

2. Initialize a buffer pool for WSF dynamic memory needs.

3. Initialize the WSF security service by calling Seclnit(), SecAeslInit(), Sec-
Cmaclinit(), SecEcclnit().

Set up a callback function for the various layers of the ExactLE stack with
WsfOsSetNextHandler(), and xxxHandlerInit(), such as WSF event handler
for HCI(Host Controller Interface), DM(Device Manager), L2C (Logical Link Con-
trol) slave, ATT(Attribute Protocol), SMP(Security Manager Protocol), app
framework, application and HCl-related events.

Start the application profile, e.g., xxxStart().

—_

. Register for stack callbacks.

Register for app framework callbacks.
Initialize attribute server database.
Set service changed CCCD index.

Set running speed and cadence features.

A T o

Reset the device.

Enter an infinite loop to dispatch WSF OS message.

Detailed initialization of Cordio stack modules is as follows:

scheduler_timer_init() enables a platform-specific (Apollo Blue MCU in this
case) timer that the WSF timer module uses.

WsfTimerlnit() performs WSF timer module initialization.

WsfBuflnit() initializes the buffer pool used for messages, data buffer, etc. This
should be carefully tuned to meet product-specific requirement.

Security algorithm module initialization is done by calling the following func-
tions:

- Seclnit(), SecAeslInit(), SecCmacinit(), SecEcclnit()
Device Manager initialization is done through the following functions:

— DmbDevVsInit(0) DmAdvinit(), DmScanlnit(), DmConnlnit(),
DmConnMasterlnit(), DmConnSlavelnit(), DmSecinit(),
DmSecLesclnit(), DmPrivinit(), DmHandlerlnit()

L2CAP module’s initialization is done through the following functions:
- L2cSlaveHandlerlnit(); L2cInit(), L2cSlavelnit(), L2ZcMasterInit()
ATT server and client are initialized through the following functions:

- AttHandlerlnit(), Attsinit(), AttsindInit(), AttcInit()

13 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Software Stack and Main Functions

= Security Manager protocol’s initialization is done through the following func-
tions:

- SmpHandlerlnit(), Smpilnit(), SmpiScinit(), Smprinit(), SmprScinit()

» The application layer registers certain callbacks for Device Manager, Connec-
tion Manager, and ATT-related sub-modules through the following functions:
(Note: Look at example for reference.)

- DmRegister(watchDmCback), DmConnRegister(DM_CLIENT_ID_APP,
watchDmCback), AttRegister(watchAttCback);
AttConnRegister(AppServerConnCback), AttsCccRegister();

= WsfOsSetNextHandler() is called with handler function to get a handler ID
which can be used by other modules to send a message to its corresponding
handler through the WSF scheduler.

» HciSetMaxRxAclLen() is called to set the maximum size of an ACL packet that
can be reassembled at the HCl layer. The current ACL packet length is 251
bytes.

Data Length Extension Support:

Data Length Extension, enabled by default for high-speed traffic, requires that a
large buffer (280 in below code snippet) is enabled for receiving/transmitting DLE
packet. The Radio_task.c (in any example project source in the AmbiSuite SDK)
can be modified to support Data Length Extension (DLE) as in the below code snip-
pet.

/***** Important note: the size of g pui32BufMem should
accommodate both overhead of the internal buffer management
structure, wsfBufPool t (up to 16 bytes for each pool), and pool
description (e.g. g_psPoolDescriptors below) . ****%/

// Memory for the buffer pool

static uint32_t g pui32BufMem [(WSF_BUF_POOLS*16+ 16%*8 + 32%4 +
64*6 + 280*8) / sizeof (uint32_t)];

// Default pool descriptor.
static wsfBufPoolDesc_t g psPoolDescriptors [WSF_BUF_ POOLS] =
{

{16, 8},
{32, 4},
{64, 6},
{280, 8}

14 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Software Stack and Main Functions

3.3 Configuring the ATT Maximum Transmission Unit (MTU)

ATT Maximum Transmission Unit (MTU) is the maximum length of an ATT packet.
MTU determines the maximum amount of data that can be handled by the trans-
mitter and receiver and held in their buffers.

The ATT PDU defined default values in AmbiqSuite SDK as below:

#define ATT DEFAULT MTU 23 /*!'< \brief Default value of ATT MTU */

#define ATT MAX MTU 517 /*'< \brief Maximum value of ATT MTU */

The MTU size is able to be configured through the ATT layer as shown in the follow-
ing structure of the application layer using one of the below methods.

Method 1:
Refer to \third_party\cordio\ble-host\include\att_api.h files in AmbiqgSuite SDK

*! \brief ATT run-time configurable parameters */
typedef struct
{

wsfTimerTicks_t discIdleTimeout; /*!< \brief ATT server service

discovery connection idle timeout in seconds */
uintlé_t mtu; /*!'< \brief desired ATT MTU */
uint8_t transTimeout; /*!'< \brief transcation timeout in
seconds */

uint8_t numPrepWrites; /*'< \brief number of queued prepare
writes supported by server */

} attCfg_t;

Example code with attCfg_t structure to increase the MTU size:

diff --git a/third party/cordio/ble-profiles/sources/apps/fit/fit main.c
b/third _party/cordio/ble-profiles/sources/apps/fit/fit main.c

--- a/third party/cordio/ble-profiles/sources/apps/fit/fit main.c

+++ b/third party/cordio/ble-profiles/sources/apps/fit/fit main.c

@@-122,6+122,14Q@@ staticconstappUpdateCfg_t fitUpdateCfg=5

/*! Number of update attempts before giving up */

};
+static const attCfg_t fitAttCfg =

+{

+ 15, /* ATT server service discovery connection
idle timeout in seconds */

+ <Target MTU>, /* desired ATT MTU, max value is
ATT MAX MTU */

+ ATT_MAX TRANS TIMEOUT, /* transaction timeout in seconds */

+ 4 /* number of queued prepare writes
supported by server*/

+};

/*! heart rate measurement configuration */
static const hrpsCfg t fitHrpsCfg =

15 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Software Stack and Main Functions

{
@@ -741,6 +749,7 @R void FitHandlerInit (wsfHandlerId t handlerId)

pAppSlaveCfg = (appSlaveCfg_t *) &fitSlaveCfg;
pAppSecCfg = (appSecCfg_t *) &fitSecCfg;
pAppUpdateCfg = (appUpdateCfg_t *) &fitUpdateCfg;
+ PpAttCfg = (attCfg t *) &fitAttCfg;
/* Initialize application framework */

AppSlavelInit() ;

Method 2:

Change the MTU size to desired value using below function.

/***/
/*!

* \brief For internal use only.

* \param connId DM connection ID.

* \param mtu Attribute protocol MTU.

* \return None.
J Rk dkkdokdekokdk ok kok ok ok kk ok k ok kk ok ok ok ko k ok k ko kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk /

void AttcMtuReq(dmConnId t connld, uintl6_t mtu);

Application Framework Initialization

The Cordio stack provides a helper module to simplify management of connec-
tions of slave and master roles and service discovery of the remote device's service
and profile.

Application Layer Configuration

Various data structures are provided to configure project-related logic and
behaviors. See below examples in AmbiqSuite\third_party\cordio\ble-
profiles\sources\apps\watch\watch_main.c.

pAppMasterCfg = (appMasterCfg_t *) &watchMasterCfg;

pAppSlaveCfg = (appSlaveCfg t *) &watchSlaveCfg;

PAppAdvCfg = (appAdvCfg t *) &watchAdvCfg;

PAppSecCfg (appSecCfg_t *) &watchSecCfg;
pAppUpdateCfg = (appUpdateCfg t *) &watchUpdateCfg;
pAppDiscCfg = (appDiscCfg_t *) &watchDiscCfg;

PAppCfg = (appCfg_t *) &watchAppCfg;

16 A-SOCAPG-UGGAO3EN v1.0

4.1

4.1.1

Clocking

Clock Sources

NOTE: This section is applicable to the Apollo4 Blue SoC family only. The BLE clock of
Apollo3 is controlled by the Apollo3 BLE controller itself, not by the MCU.

Configure CLKREQ GPIO

The Apollo4 Blue Bluetooth Low Energy Controller supports the crystal clock and
single-ended clock sources. On the Apollo4 Blue, the clocks are sourced from the
MCU to the Bluetooth Low Energy controller. In this configuration, the 32 MHz
clock is driven on the XO32M input as a single-ended signal. Similarly, the 32 kHz
clock is driven on the XO32K input as a single-ended signal. This section describes
how the XTAL32MHz clock is sourced from Apollo4 to the Bluetooth Low Energy
controller.

The Apollo4 Blue has inputs for both 32 MHz and 32 kHz crystals. The 32 MHz
crystal is connected to the XO32M / XI32M pins, while the 32 kHz crystal is
connected to the XO/XI pins. The clocking configuration is set in the
MCUCTRL_XTALCTRL and the MCUCTRL_XTALHSCTRL registers respectively..

The CLKREQ (GPIO) signal is used to assert clock requests to the SoC. This allows
the SoC to power down the 32 MHz crystal to save power. The 32 kHz is always on
after the Bluetooth Low Energy controller in the Apollo4 Blue is initialized and
turned on.

17 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Clocking

Figure 4-1: Configuring CLKREQ GPIO

32MHz 32MHz
:i xos2M > Xxo32m
T | 32.768KHz Bluetooth Low
T Xi32M - Apollo4 SoC X032K Energy
. i | X0 Controller
Eﬁ CLKREQ
< CLKREQ
B I

The handshake of XTAL32MHz is as described below.

Figure 4-2: Wake Event Sequence

CLKREQ / \
¢ t1 »

On a “wake” event the sequence is as follows:

1. The Bluetooth Low Energy controller utilizes an internal 32 MHz RC oscillator
signal (RC32M) to assert CLKREQ.

2. The Apollo4 SoC initiates XTAL32M startup after receiving the CLKREQ inter-
rupt.

3. XTAL32MHz is stable after ‘t1’ delay time and available to output to XO32M of
the BLE controller.

4. The Bluetooth Low Energy controller switches to use XTAL32M after asserting
CLKREQ for ‘t2" delay.

Note:

NOTE: ‘t1’ delay must be shorter than ‘t2' delay, meaning that the
XTAL32M must become stable before the Bluetooth Low Energy con-
troller switches to use XTAL32M from RC32M.

On “sleep” event:

1. The Bluetooth Low Energy controller switches to use the low-frequency clock
and de-asserts CLKREQ.

2. The SoC gates XTAL32M and optionally powers down XTAL32M.

18 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide

Clocking

4.2

4.2.1

NOTES:
= The XTAL32MHz is powered down by default when CLKREQ de-
assertion is detected. XTAL32MHz should be kept on if other

modules of Apollo4 SoC are using it and powered down when
not used.

Clock Configuration

Configure CLKREQ GPIO

= To determine whether the 32 MHz crystal needs to be trimmed
and how to perform the trim, refer to the knowledge base article
Apollo4 Blue / Apollo4 Blue Plus SoC 32 MHz Crystal Calibration.

Initialize the GPIO configuration of CLKREQ pin and enable it in
am_devices_cooper_pins_enable().

NOTE: Different Apollo4 series devices use different GPIOs for CLKREQ.

am_hal gpio_pincfg t g AM DEVICES_ COOPER_CLKREQ =

{

.GP.
.GP.
.GP.
.GP.
.GP.
.GP.
.GP.
.GP.
.GP.
.GP.
.GP.
.GP.
.GP.
.GP.
.GP.

cfg b.
cfg b.
cfg b.
cfg b.
cfg b.
cfg b.
cfg b.
cfg b.
cfg b.
cfg b.
cfg b.
cfg b.
cfg b.
cfg b.
cfg b.

uFuncSel
eGPInput
eGPRdZero
eIntDir
eGPOutCfg
eDriveStrength
uSlewRate
ePullup

uNCE

eCEpol

uRsvd 0
ePowerSw
eForceInputEn
eForceOutputEn

uRsvd_1

AM_HAL PIN 40_GPIO,

AM_HAL GPIO_PIN INPUT_ ENABLE,
AM_HAL GPIO_PIN RDZERO_READPIN,
AM_HAL GPIO_PIN INTDIR_LO2HI,
AM_HAL GPIO_PIN_OUTCFG_DISABLE,
AM_HAL GPIO_PIN DRIVESTRENGTH_ 12MA,
0,

AM_HAL GPIO_PIN_PULLUP_NONE,

0,

AM_HAL GPIO_PIN CEPOL_ACTIVELOW,
0,

AM_HAL GPIO_PIN POWERSW_NONE,
AM_HAL GPIO_PIN FORCEEN NONE,
AM_HAL GPIO_PIN_FORCEEN NONE,

0,

19

A-SOCAPG-UGGAO3EN v1.0

https://support.ambiq.com/hc/en-us/articles/4415037380109

Apollo3 and Apollo4 Family BLE User’s Guide Clocking

void am devices_cooper_ pins_enable (void)
{
am_hal gpio_pinconfig(AM DEVICES COOPER CLKREQ PIN,
g_AM DEVICES_COOPER_CLKREQ) ;

4.2.2 Initialize CLKREQ Interrupt Service

Initialize the CLKREQ interrupt and corresponding service handler in
HciDrvRadioBoot().

uint32_t HciDrvRadioBoot (bool bColdBoot)
{

uint32_t IntNum = AM DEVICES_COOPER_CLKREQ PIN;
am_hal gpio_interrupt register (AM HAL GPIO_INT CHANNEL O, IntNum,
ClkReqIntService, NULL) ;
am_hal gpio_interrupt control (AM_HAL GPIO_INT CHANNEL O,
AM HAL GPIO_INT_ CTRL INDV_ENABLE, (void *)&IntNum);

static void ClkReqgIntService (void *pArgqg)
{
if (am_devices_cooper_clkreq read(g_IomDevHdl))
{
// Power up the 32MHz Crystal
am_hal mcuctrl control (AM_HAL MCUCTRL CONTROL EXTCLK32M KICK_ START,
0);

else

am_hal_mcuctrl_control (AM_HAL MCUCTRL_CONTROL_EXTCLK32M DISABLE, 0);

}
am_hal _gpio_intdir_toggle (AM_DEVICES_COOPER CLKREQ PIN) ;

20 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Clocking

4.2.3

Initialize XTAL32MHz Startup

am_hal_mcuctrl_control() is used to enable and disable the 32MHz crystal. Mod-
ify the trim codes for CAP1/CAP2 by setting the MCUCTRL_XTALHSTRIMS_XTAL-
HSCAPTRIM and MCUCTRL_XTALHSTRIMS_XTALHSCAP2TRIM fields of the
MCUCTRL_XTALHSTRIMS register based on the specific XTAL32M model on your
board in the case of AM_HAL_MCUCTRL_CONTROL_EXTCLK32M_KICK_START,
AM_HAL_MCUCTRL_CONTROL_EXTCLK32M_DISABLE and AM_HAL_MCUC-
TRL_CONTROL_EXTCLK32M_NORMAL.

uint32_t am_hal mcuctrl_control (am_hal mcuctrl control_e eControl, void
*pArgs)
{

volatile uint32_t ui32Reg;

switch (eControl)

{

case AM HAL MCUCTRL_CONTROL_ EXTCLK32M KICK_ START:

// Set the specific trim code for CAP1/CAP2, it impacts frequency
accuracy and should be retrimmed

ui32Reg = _VAL2FLD (MCUCTRL XTALHSTRIMS XTALHSCAP2TRIM, 44) |
_VAL2FLD (MCUCTRL_XTALHSTRIMS XTALHSCAPTRIM, 4) |

// Set the transconductance of crystal to maximum, it accelerates
the startup sequence

_VAL2FLD (MCUCTRL_XTALHSTRIMS XTALHSDRIVETRIM, 3) |
// Choose the power of clock driver to be the cleanest one

_VAL2FLD (MCUCTRL_XTALHSTRIMS XTALHSDRIVERSTRENGTH, 0) |
// Tune the bias generator

_VAL2 FLD (MCUCTRL_XTALHSTRIMS_XTALHS IBIASCOMP2TRIM, 3) |

_VAL2FLD (MCUCTRL_XTALHSTRIMS XTALHSIBIASCOMPTRIM, 15) |
// Set the bias of crystal to maximum

_VAL2 FLD (MCUCTRL_XTALHSTRIMS_XTALHS IBIASTRIM, 127) |

_VAL2FLD (MCUCTRL_XTALHSTRIMS XTALHSRSTRIM, 0) |

_VAL2FLD (MCUCTRL XTALHSTRIMS XTALHSSPARE, O0);

MCUCTRL->XTALHSTRIMS = ui32Reg;

break;

}

am_devices_cooper_crystal_trim_set() also may be used to set the CAP1/CAP2
to test the 32 MHz crystal frequency on your board to find a suitable values for
good accuracy.

21 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Clocking

4.2.4

Wakeup Time Configuration

For the “t1” delay mentioned in Section 3.1 LE Host Stack on page 12, it means that
the XTAL32MHz needs some time to startup and become available to provide the
clock to the Bluetooth Low Energy Controller to work. Generally, it needs at least

750 ps.

For the “t2” delay mentioned in Section 3.1 LE Host Stack on page 12 it means that
the Bluetooth Low Energy Controller waits for one fixed setting time after asserting
CLEREQ then switches to use the XTAL32MHz from RC 32M. If “t1”is longer than
“t2" the Bluetooth Low Energy Controller will enter an unknown state You can set
the “t2" by modifying the EXT_WAKEUP_TIME_VALUE and OSC_WAKEUP_-
TIME_VALUE in am_devices_cooper.h.

NOTE: EXT_WAKEUP_TIME_VALUE determines the time before switching to
XTAL32M from RC32M when the Bluetooth Low Energy Controller is awakened
by an external signal, while OSC_WAKEUP_TIME_VALUE determines the time
before switching to XTAL32M from RC32M when the Bluetooth Low Energy Con-
troller is awakened by its internal timer. The Bluetooth Low Energy Controller
may not know the wakeup source in the next wakeup instant so it will choose
the greater of these two parameters to determine the time which is called ‘t2’
delay in the context. These two parameters are always set to be the same value
and that value is written to Bluetooth Low Energy Controller NVDS field. The
default value is 1000 ps.

#ifndef EXT_WAKEUP_ TIME_VALUE

#define EXT WAKEUP_TIME VALUE 1000 // microsecond
#endif

#ifndef OSC_WAKEUP TIME VALUE

#define OSC_WAKEUP_TIME VALUE 1000 // microsecond
#fendif

The Apollo4 SoC needs to execute the ClkReqlIntService() function within “t2-t1”
time after receiving the CLKREQ interrupt. For complex systems, there may be
other GPIO interrupts in the same GPIO group with CLKREQ which may block the
executing of ClkReqIntService(). The higher “t2” delay needs to be set to make the
Bluetooth Low Energy Controller wait for more time.

NOTE: The higher wakeup time makes the Bluetooth Low Energy Controller
wake up earlier when waiting for the XTAL32M and may result in higher power
consumption.

22 A-SOCAPG-UGGAO3EN v1.0

32 MHz Crystal Calibration

See knowledge base article Apollo4 Blue / Apollo4 Blue Plus SoC 32 MHz Crystal Calibration and
Apollo3 Blue SoC/Apollo3 Blue Plus SoC 32 MHz Crystal Calibration in the Ambiq Support Center
for information about how to determine if trimming of the 32 MHz crystal is needed and
instructions for trimming the crystal frequency.

23 A-SOCAPG-UGGAO3EN v1.0

https://support.ambiq.com/hc/en-us/articles/4415037380109
https://support.ambiq.com/hc/en-us/articles/4418551434765-Apollo3-Blue-SoC-32-MHz-Crystal-Calibration

Vendor-Specific HCl Commands
for BLE Controller

The overall vendor-specific HCl commands supported are shown in Table 6-1.

NOTE: The Vendor Specific HCI Commands applicable only for Apollo4 Blue SoC family.

Table 6-1: Overall Vendor-Specific HCl Command

HCl Command OGF OCF Opcode
Set Transmit Power Level Ox3F 0x0070 0xFC70
Set Log Bit Map Ox3F 0x0073 OxFC73
Set Bluetooth Address Ox3F 0x0074 OxFC74
Update Bluetooth Low Energy Firmware Ox3F 0x0075 OxFC75
Read Register Value Ox3F 0x0039 O0xFC39
Write Register Value Ox3F 0x003A OxFC3A
Get Device ID Ox3F 0x0076 0xFC76
Set NVDS Parameter Ox3F 0x0077 OxFC77
Set Link Layer Feature Ox3F 0x0078 OxFC78

24 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Vendor-Specific HCI Commands for BLE Controller

6.1 HciVscSetRfPowerLevelEx

This command is used to configure the radio transmit power level during normal
mode or test mode.

Table 6-2: HciVscSetRfPowerlLevelEx Parameter Description

Parameter Size (in bytes) Description Opcode

Transmit Power level 1 Transmit output power lev- 0xFC70
els -20dBm/-15dBm/-
10dBm/-5dBm/0dBm/4dBm/
6dBm, using value 0x00/0x01/
0x02/0x03/0x04/0x05/0x06 as
the parameter value.

Return Parameters
Status 1 Standard BT error code

Example: Set transmit output power level to 4dBm:
Command: 0170FCO0105
Event: 04 OE 04 0570 FC00

NOTE: The 05 means the output power level is 4dBm as in the description section.

Set Bluetooth Low Energy Transmit Power function:

The following API/ code snippet used to set the TX power through the main appli-
cation with the immediate call of the HCIDrvRadioBoot function.

\boards\apollo4b _blue_evb\examples\ble\ble freertos_ fit\src\radio_task.c
void
RadioTask (void *pvParameters)
{
#if WSF_TRACE_ENABLED == TRUE

//

// Enable ITM

//

am util debug printf("Starting wicentric trace:\n\n");
#endif

// Boot the radio.

HciDrvRadioBoot (1) ;

+ // Set the default BLE TX Output power.
+ am util ble_ tx power_ set(g_IomDevHdl, TX POWER_LEVEL DEFAULT) ;

// Initialize the main ExactLE stack.

//

exactle stack_init();

}

25 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Vendor-Specific HCI Commands for BLE Controller

The Tx power level in dBm is defined as below in the AmbiqSuite SDK in this file:

\third party\cordio\ble- host\sources\hci\ambiqg\cooper\hci_drv_cooper.h.
//***

// AMBIQ vendor specific events

//***

// Tx power level in dBm.

typedef enum

{
TX_POWER_LEVEL MINUS_20P0_dBm,
TX_POWER_LEVEL MINUS_15P0_dBm,
TX_POWER_LEVEL MINUS_10P0_dBm,
TX_POWER_LEVEL MINUS_5P0_dBm,
TX_POWER_LEVEL OPO_dBm,
TX_POWER_LEVEL PLUS_3P0_dBm,
TX_POWER_LEVEL PLUS_4P0_dBm,
TX_POWER_LEVEL PLUS_6P0_dBm,
TX_POWER_LEVEL_ INVALID,

} txPowerLevel t;

// Set the default BLE TX Output power to +0dBm.
#define TX_POWER_LEVEL_DEFAULT TX_ POWER_LEVEL OPO_dBm

6.2 HciVscSetTraceBitMap

This command is used to enable the specified logging bitmap in Bluetooth Low
Energy controller to output corresponding logging information to HOST.

Table 6-3: HciVscSetTraceBitMap Parameter Description

Parameter Size (in bytes) Description Opcode
Logging bitmap 4 Bitmap configuration for inter- OxFC73
ested traces from controller to
host.

Return Parameters
Status 1 Standard BT error code

26 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Vendor-Specific HCI Commands for BLE Controller

6.3 HciVscUpdateFw

This command is used to indicate Cooper which type of firmware to update.

Table 6-4: HciVscUpdateFw Parameter Description

Parameter Size (in bytes) Description Opcode
Logging bitmap 4 Bitmap configuration for inter- OxFC73
ested traces from controller to
host.
Return Parameters
Status 1 Standard BT error code
Example:

Command: 0175 FC040D5AB7 38
Event: 04 OE 04 05 75 FC 00

6.4 HciVscReadReg

This command is used to read the value of a specified register from Cooper.

Table 6-5: HciVscReadReg Parameter Description

Parameter Size (in bytes) Description Opcode
Register address 4 4 bytes of register address 0xFC39
Return Parameters

Status 1 Standard BT error code

Register address 4 Register address in little endian format
Register value 4 Register value in little endian format

Example: Read the value of register address 0x45C00018
Command: 0139FC04 1800 CO 45
Event: 04 0EO0CO0539FC001800C045403B09C8

NOTES:
= For the command and event, the data applies little endian format.

= For the event, the 00 status means success, the 4 bytes 18 00 c0 45 is the
register address, and the 4 bytes 40 3B 09 C8 is the value.

27 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Vendor-Specific HCI Commands for BLE Controller

6.5

6.6

HciVscWriteReg

This command is used to write a value to a specified register.

Table 6-6: HciVscWriteReg Parameter Description

Parameter Size (in bytes) Description Opcode
Register address 4 4 bytes of register address OxFC3A
Value to set 4 4 bytes of value to set

Return Parameters

Status 1 Standard BT error code
Register address 4 Register address in little endian format

Example: Write value 0xC8093B45 to register 0x45C00018
Command: 01 3AFC08 18 00 c0 45 40 3B 09 c8
Event: 04 OE08 05 3A FC00 18 00 CO 45

NOTES:
= For the command and event, the data applies little endian format.

= For the command, the 4 bytes 18 00 c0 45 is the register address, and the
4 bytes 40 3B 09 C8 is the value.

= For the event, the 00 status means success, the 4 bytes 18 00 c0 45 is the
register address.

HciVscGetDeviceld

This command is used to get Bluetooth Low Energy chip ID.

Table 6-7: HciVscGetDeviceld Parameter Description

Parameter Size (in bytes) Description Opcode
NULL 0 OxFC76
Return Parameters
Status 1 Standard BT error code
Register address 4 Chip ID in little endian format

Example:

Command: 01 76 FC 00
Event: 04 OEOC 0576 FC000417 6164 71F43050

28 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Vendor-Specific HCI Commands for BLE Controller

6.7 HciVscUpdateNvdsParam

This command is used to change NVDS parameter according to actual implemen-
tation.

Table 6-8: HciVscUpdateNvdsParam Parameter Description

Parameter Size (in bytes) Description Opcode
NVDS parameter 240 240 is the maximum length of OxFC77
NVDS parameters.

Return Parameters
Status 1 Standard BT error code

NOTE: Refer to nvds_data array in hci_drv_cooper.c, you can add the parame-
ters to be changed.

6.8 HciVscUpdateLinklayerFeature

This command is used to change Link Layer supported features according to actual
implementation.

Table 6-9: HciVscUpdateLinklayerFeature Parameter Description

Parameter Size (in bytes) Description Opcode
Link Layer features 8 The default length for link layer 0xFC78
features

Return Parameters
Status 1 Standard BT error code

29 A-SOCAPG-UGGAO3EN v1.0

Bluetooth Low Energy MAC
Address

The Bluetooth address or Bluetooth MAC address is a 48-bit value that uniquely identifies a
Bluetooth device. In the Bluetooth specification, it is referred to as BD_ADDR.

In the HCl driver initialization, the Bluetooth device address is created with Apollo device ID
and it is programmed into the Bluetooth Low Energy controller through the HCI VS command
during startup of the Cordio stack. See the example code below:

/**/

Refer hci_drv_cooper.c and radio_task.c files in AmbigSuite SDK
/**/
HciDrvRadioBoot (bool bColdBoot)
{
// When it's bColdBoot, it will use Apollo's Device ID to form Bluetooth address.
If (bColdBoot)
{
am_hal mcuctrl device_t sDevice;
am_hal mcuctrl info_get (AM HAL MCUCTRL_INFO DEVICEID, &sDevice);
// Bluetooth address formed by ChipIDl1l (32 bits) and ChipIDO (8-23 bits).
Memcpy (g_BLEMacAddress, &sDevice.ui32ChipID1l, sizeof (sDevice.ui32ChipIDl));
// ui32ChipIDO bit 8-31 is test time during chip manufacturing
g_BLEMacAddress[4] = (sDevice.ui32ChipIDO >> 8) & OxFF;
g_BLEMacAddress|[5]

(sDevice.ui32ChipIDO0 >> 16) & OxFF;
}

return AM DEVICES_ COOPER_STATUS_SUCCESS;
}

30 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Bluetooth Low Energy MAC Address

Public Address:

A public address is a global fixed address which must be purchased from IEEE. Ambiq does not
ship Apollo family SoCs with public addresses preprogrammed.

The following APl is used to set the custom BD_ADDR. In AmbiqgSuite SDK releases, uncom-
ment the following code snippets. Using the project ble_freertos_fit as an example, and mod-
ify the address as shown below to apply.

\boards\apollo4b_blue_ evb\examples\ble\ble freertos_fit\src\radio_task.c

void RadioTask (void *pvParameters)

{
exactle_stack_init();
// uncomment the following to set custom Bluetooth address here

- // A

- // uint8_t bd addr[6] = {0x1l, 0x22, 0x33, 0x44, 0x55, 0x66};
- // HciVscSetCustom BDAddr (&bd_addr) ;

- // '}

+ {

+ uint8_t bd_addr[6] = {0x11l, 0x22, 0x33, 0x44, 0x55, 0x66};

+ HciVscSetCustom BDAddr (&bd_addr[0]) ;

}

Random Static Address:

To use a random static address, apply the following code snippet to the application in develop-
ment. Use the project ble_freertos_fit as an example. The macro DM_RAND_ADDR_SET is
called to make sure the address to be set follows the format defined by the Bluetooth specifica-
tion.

Make sure the address is configured before any air activity executions, advertising, scanning,

etc.

\third party\cordio\ble-profiles\sources\apps\fit\fit main.c
static void fitSetup(fitMsg_t *pMsg)
{

AppAdvSetData (APP_ADV_DATA CONNECTABLE, sizeof (fitAdvDataDisc), (uint8 t *) fitAdv-
DataDisc) ;

AppAdvSetData (APP_SCAN DATA CONNECTABLE, sizeof (fitScanDataDisc), (uint8_t *) fits-
canDataDisc) ;

uint8_t ui8Addr[BDA_ADDR LEN] = {0x11l, 0x22, O0x33, 0x44, 0x55, 0x66};

+
+
+ DM RAND ADDR SET (ui8Addr, DM RAND ADDR STATIC) ;
+ DmDevSetRandAddr (ui8Addr) ;
+ DmAdvSetAddrType (DM _ADDR_RANDOM) ;

/* start advertising; automatically set connectable/discoverable mode and bondable
mode */

AppAdvStart (APP_MODE AUTO_INIT) ;
}

31 A-SOCAPG-UGGAO3EN v1.0

Enabling the BLE Resolvable
Private Address Resolution

A Resolvable Private Address (RPA) is an address that's generated using a random number and
the secret Identity Resolving Key (IRK). It is used to prevent malicious third parties from track-
ing a Bluetooth device and allowing one or more trusted parties from identifying the Bluetooth
device of interest.

A Resolvable Random Private address is resolvable using a key shared with a trusted device.
This key is referred to as the IRK (Identity Resolving Key). This IRK is shared between two devices
at the time of pairing and stored in the device’s internal memory during bonding.

Along with IRK, the devices share a fixed address called the Identity Address. A Resolvable Pri-
vate address contains following fields (little-endian format):

Hash (24 bits) Prand (22 bits) 1 0

= The “prand”is a 24-bit number that has 22 random bits and 0 and 1 are fixed in the most
significant bits (MSB)

» The lower 24-bits represent a hash value which is generated using the “prand”and the
IRK

The AmbigSuite ble_freertos_fit example enables the RPA feature demo with the following
code added into fit_main.c source file (\third_party\cordio\ble-pro-
files\sources\apps\fit\fit_main.c).

32 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Enabling the BLE Resolvable Private Address Resolution

The code defined in the macro PRIVACY_RPA_FEATURE_ENABLE as shown below.

\third party\cordio\ble-profiles\sources\apps\fit\fit main.c
/***

Macros
***/

+#define PRIVACY RPA FEATURE ENABLE
/*! WSF message event starting value */
#define FIT_MSG_START 0xAQ

@@ -65,6 +65,9 QR enum

FIT HR TIMER IND = FIT MSG_START, /*! Heart rate measurement timer expired */
FIT BATT TIMER IND, /*! Battery measurement timer expired */
FIT RUNNING TIMER_ IND /*! Running speed and cadence measurement timer

expired */
+#ifdef PRIVACY_ RPA FEATURE_ ENABLE
+ ,FIT_RPA ADDR_READ TIMER_IND
+#endif

}i

/**

@@ -105,7 +108,11 @@ static const appSecCfg_t fitSecCfg =

#endif
DM _AUTH_SC_FLAG, /*! Authentication and bonding flags */
o, /*! Initiator key distribution flags */
- DM KEY DIST LTK, /*! Responder key distribution flags */

+#ifdef PRIVACY RPA FEATURE ENABLE
+ DM KEY DIST LTK|DM KEY DIST IRK,

+#else

+ DM KEY DIST LTK, /*! Responder key distribution flags */

+#endif
FALSE, /*! TRUE if Out-of-band pairing data is present */
FALSE /*! TRUE to initiate security upon connection */

};
@@ -149,7 +156,17 @@ static const smpCfg t fitSmpCfg =
64000, /*! Time msec before attemptExp decreases */
2 /*! Repeated attempts multiplier exponent */
}:
+#ifdef PRIVACY RPA FEATURE ENABLE
+extern uint8_t g BLEMacAddress[6];
+#define RPA TIMEOUT_ SEC (10) // RPA timeout in second unit

+/*! local IRK */
+static uint8_t locallIrk[] =
+{
+ OxA6, 0xD9, OxFF, 0x70, 0xD6, Ox1lE, OxFO, OxA4, 0x46, Ox5F, 0x8D, 0x68, 0x19, OxF3,
0xB4, 0x96
+};
+wsfTimer t rpaAddrReadTimer;
+#endif
[3% e e e e e e e e e e ek ek ko ok o o o o o o o e e

Advertising Data
Kkkkkkkkkk [

33 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Enabling the BLE Resolvable Private Address Resolution

@@ -603,6 +620,9 @@ static void fitProcMsg(fitMsg_t *pMsgqg)
AttsCalculateDbHash() ;
DmSecGenerateEccKeyReq() ;
fitSetup (pMsg) ;

+#ifdef PRIVACY RPA_FEATURE ENABLE

+ DmPrivSetResolvablePrivateAddrTimeout (RPA_TIMEOUT_SEC) ;
+#endif

uiEvent = APP_UI RESET CMPL;

break;

@@ -616,6 +636,9 @Q static void fitProcMsg(fitMsg t *pMsg)

case DM ADV_START IND:
uiEvent = APP_UI_ADV_START;
+#ifdef PRIVACY RPA FEATURE ENABLE
+ HcilLeReadLocalResolvableAddr (appSlaveCb.peerAddrType[DM ADV HANDLE DEFAULT],
appSlaveCb.peerAddr [DM ADV_HANDLE DEFAULT]) ;
+#endif
break;

case DM_ADV_STOP_IND:

@@ -642,7 +665,42 @Q static void fitProcMsg(fitMsg_t *pMsg)
DmSecGenerateEccKeyReq() ;
uiEvent = APP_UI_SEC_PAIR CMPL;
break;

+#ifdef PRIVACY_ RPA FEATURE_ ENABLE

+ case FIT_RPA ADDR READ TIMER IND:

+ HciLeReadLocalResolvableAddr (appSlaveCb.peerAddrType [DM ADV HANDLE DEFAULT],

appSlaveCb.peerAddr [DM_ADV_HANDLE_DEFAULT]) ;

+ break;

+

+ case DM _PRIV_READ LOCAL RES_ADDR_IND:

+ {

+ hcilLeReadLocalResAddrCmdCmplEvt t *evt = (hcilLeReadLocalResAddrCmdCmplEvt t*)
— pMsg: —

+ WsfTrace ("current local RPA:%$s", Bda2Str (evt->localRpa)) ;

+ WsfTimerStartSec (&rpaAddrReadTimer, RPA TIMEOUT_ SEC) ;

+ }

+ break;

+

+ case DM_PRIV_ADD DEV_TO RES_LIST IND:

+ {

+ dmSecKey_t *pPeerKey;

+ appDbHdl_t dbHd1;

+

+ /* get device database record handle */

+ dbHdl1 = AppDbGetHdl ((dmConnId t) pMsg->hdr.param) ;

+

+ /* if database record handle wvalid */

+ if (dbHdl '= APP DB HDL_NONE)

+ {

+ pPeerKey = AppDbGetKey (dbHdl, DM KEY IRK, NULL);

+

34 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Enabling the BLE Resolvable Private Address Resolution

+ if (pPeerKey != NULL)

+ {

+ /* set advertising peer address */

+ AppSetAdvPeerAddr (pPeerKey->irk.addrType, pPeerKey->irk.bdAddr) ;
+ }

+ }

+ }

+ break;

+#endif

case DM_SEC_PAIR FAIL IND:
DmSecGenerateEccKeyReq() ;
uiEvent = APP_UI_SEC_PAIR FAIL;

@@ -751,6 +809,15 @@ void FitHandlerInit(wsfHandlerId t handlerId)
/* initialize heart rate profile sensor */
HrpsInit(handlerld, (hrpsCfg t *) &fitHrpsCfq);
HrpsSetFlags (fitHrmFlags) ;

+#ifdef PRIVACY RPA FEATURE_ ENABLE

// update Local IRK to be unique value

memcpy (locallrk, g _BLEMacAddress, BDA_ADDR LEN) ;

/* Set IRK for the local device */

DmSecSetLocalIrk (localIrk) ;

rpaAddrReadTimer.msg.event
rpaAddrReadTimer.handlerId
+#endif

FIT RPA ADDR READ TIMER IND;
fitHandlerId;

+ + + + + + +

/* initialize battery service server */
BasInit(handlerId, (basCfg_t *) &fitBasCfg);

Workflow of RPA:

When the slave device (Apollo Blue) is paired with the peer device, the IRK will be exchanged
and sent to the controller. Then on the next time advertising will use RPA.

1. Pairing Apollo SDK fit example with phone.

NOTE: As mentioned include above code snippet changes in AmbiqSuite SDK
third_party\cordio\ble-profiles\sources\apps\fit\fit_main.c.

2. Disconnect the connection, and then the Apollo fit example will advertise using RPA.

35 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Enabling the BLE Resolvable Private Address Resolution

Monitor SWO log of the Apollo FIT Example:

When the DUT starts advertising for the very first time, the log says current local
RPA:000000000000.

FreeRTOS Fit Example
Running setup tasks...
RadioTask: setup
Starting wicentric trace:

BLE Controller Info:

FW Ver: 1.21.0.0
Chip ID®: ex92492492
Chip ID1: ex4111e225

NOo new image to upgrade
BLE Controller FwWw Auth Passed, Continue with Fw
BLE Controller Init Done

FitHandlerInit

Calculating database hash

Fit got evt 1ea1

HCci config trace ack, bitmap:exeeeseeee
[ee:ee:2€:811.562] Custom data: id exe, exeeeesees
32K clock= 32773 Hz

Fit got evt 32

>>> Reset complete <<«

dmadvActConfig: state: @

dmAadvActSetData: state: @

dmadvAactSetData: state: e

dmadvactstart: state: e
HCI_LE_ADV_ENABLE_CMD_CMPL_CBACK_EVT: state: 3
dmDevPassEviToDevPriv: event: 2e, param: 23, advHandle: @
Fit got evt 33

>>> Advertising started <<<

Fit got evt &2

current local RPA:eeeeeeeeeeee

Database hash calculation complete

Fit got evt 17

36 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide

Enabling the BLE Resolvable Private Address Resolution

After successfully pairing the devices, disconnect the DUT with Apollo/Fit. The RPA will keep
updating based on every 10 seconds due to RPA_TIMEOUT_SEC being set to 10 secin the

demo.

Fit got

evt 49

>»>> Connection closed <«<<
dmadvAactConfig: state: o

dmadvAactsetData: state: e
dmadvActSetData: state: @
dmadvAactStart: state: @

HCI_LE_ADV_ENABLE_CMD CMPL_CBACK_EVT:
dmDevPassEvtToDevPriv:

Fit got

evt 33

>>> Advertising started <<«

Fit got
current
Fit got
Fit got
current
Fit got
Fit got
current
Fit got
Fit got
current
Fit got
Fit got
current
Fit got
Fit got
current
Fit got
Fit got
current
Fit got
Fit got
current
Fit got
Fit got
current
Fit got
Fit got
current
Fit got
Fit got
current
Fit got
Fit got
current
Fit got

evt 62
local RPA:7F16F&6646347
evt 163
evt 62
local RPA:7F16F66426347
evt 163
evt &2
local RPA:7856BE43F@89
evt 163
evt 62
local RPA:78D22Bceages
evt 163
evt 62
local RPA:45957DESB15Se
evt 163
evt &2
local RPA:e6D22EGE49978
evt 163
evt &2
local RPA:4829EAS51882
evt 163
evt 62
local RPA:44EBeDCE@SSE
evt 163
evt 62
local RPA:7ECE1B14E77C
evt 163
evt 82
local RPA:45CSBB37ES947
evt 163
evt &2
local RPA:57871FBSFEe@
evt 163
evt 62
local RPA:77D38B1EE751
evt 163

state: 3
event: 2@, param: 33, advHandle: €

37

A-SOCAPG-UGGAO3EN v1.0

Different Types of Advertising

This section describes how to apply different legacy advertising types in applications devel-
oped using the AmbiqSuite SDK.

Four types of legacy advertising are defined in the Bluetooth core specification. With different
application requirements, different types of advertisement might be applied. The following
table maps these four types with the settings defined in the Bluetooth Low Energy host stack
solution in AmbiqSuite as well as in the scannable and connectable properties. This section
focuses on how to apply it when developing applications with AmbiqgSuite. The other features,
advertising filter policy and privacy, which can change how a slave device responds to scan or
connection requests, are assumed to be configured “not in use” or “disabled” and thus are not
in effect.

Table 9-1: Types of Advertising

Advertising Type Setting’ in AmbiqSuite Scannable Connectable
ADV_IND DM_ADV_CONN_UNDIRECT X X
ADV_DIRECT_IND DM_ADV_CONN_DIRECT x?
DM_ADV_CONN_DIRECT_LO_DUTY
ADV_SCAN_IND DM_ADV_SCAN_UNDIRECT X

ADV_NONCONN_IND DM_ADV_NONCONN_UNDIRECT

T Settings are defined in <AmbiqSuite_root>/third_party/cordio/ble-host/include/dm_api.h.

2|nitiators other than the correctly addressed initiator shall not respond.

38 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Different Types of Advertising

The following code changes can be applied to any Bluetooth Low Energy projects which need
the corresponding advertising types.

ADV_IND:

This is a connectable and scannable undirected advertising type which allows a scanner or ini-
tiator to respond with either a scan request (SCAN_REQ) or connect request (CONNECT_IND).

This is the commonly used advertising type and is also the default advertising type used in
most of Bluetooth Low Energy application examples in AmbiqSuite. In some applications, it
might require to switch between advertising types. To switch back from another advertising
type, call the following APIs in order when there’s no ongoing advertising.

AppSetAdvType (DM _ADV_CONN UNDIRECT) ;
AppAdvStart (APP_MODE_AUTO INIT) ;

The initiator then sends a scan request (SCAN_REQ) and the corresponding response
(SCAN_RSP) is sent back by advertiser.

ADV_SCAN_IND:

This is a non-connectable and scannable undirected advertising type. Device advertising with
ADV_SCAN_IND will only respond to scan requests. The following code modification to

enable ADV_SCAN_IND is quite straightforward. Call the following APIs in order when there is
no ongoing advertising. Ambiq Suite SDK ble_freertos_fit example code taken as a reference.

static void fitSetup(fitMsg_t *pMsg)
{
/* set advertising and scan response data for discoverable mode */

AppAdvSetData (APP_ADV_DATA DISCOVERABLE, sizeof (fitAdvDataDisc), (uint8_t *) fitAdv-
DataDisc) ;

AppAdvSetData (APP_SCAN DATA DISCOVERABLE, sizeof (fitScanDataDisc), (uint8_t*) fitScan-
DataDisc) ;

+ AppSetAdvType (DM_ADV_SCAN UNDIRECT) ;
+ AppAdvStart (APP_MODE DISCOVERABLE) ;

- /* start advertising; automatically set connectable/discoverable mode and bondable
mode */

- AppAdvStart (APP_MODE_AUTO_INIT) ;
}

39 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Different Types of Advertising

ADV_NONCONN_IND:

This is a non-connectable and non-scannable undirected advertising type and is usually
referred to as “beacon” mode. Device advertising with ADV_NONCONN_IND will not respond
to any scan requests nor to connect requests. Since no scan requests will be responded to by
device advertising with ADV_NONCONN_IND.

The following code modification to enable ADV_NONCONN_IND is quite straightforward. Call
the following APIs in order when there is no ongoing advertising. AmbiqgSuite SDK ble_freer-
tos_fit example code taken as reference.

static void fitSetup(fitMsg_t *pMsg)
{
/* set advertising and scan response data for discoverable mode */
AppAdvSetData (APP_ADV_DATA DISCOVERABLE, sizeof (fitAdvDataDisc),
(uint8_t *)fitAdvDataDisc);
AppAdvSetData (APP_SCAN DATA DISCOVERABLE, sizeof (fitScanDataDisc),
(uint8_t*) fitScanDataDisc) ;
+ AppSetAdvType (DM_ADV_NONCONN_UNDIRECT) ;
+ AppAdvStart (APP_MODE DISCOVERABLE) ;
- /* start advertising; automatically set connectable/discoverable mode and bondable
mode */
- AppAdvStart (APP_MODE_AUTO_INIT) ;

40 A-SOCAPG-UGGAO3EN v1.0

Saving and Managing Peer
Credentials

The security manager defines the protocols and algorithms for generating and exchanging
keys between two devices. It involves following security features:

Pairing: the process of creating shared secret keys between two devices.

Bonding: the process of creating and storing shared secret keys on each side (central and
peripheral) for use in subsequent connections between the devices.

Authentication: the process of verifying that the two devices share the same secret keys.

Encryption: the process of encrypting the data exchanged between the devices. Encryp-
tion in Bluetooth Low Energy uses the 128-bit AES Encryption standard, which is a symmet-

ric-key algorithm (meaning that the same key is used to encrypt and decrypt the data on
both sides).

Message Integrity: the process of signing the data, and verifying the signature at the other
end. This goes beyond the simple integrity check of a calculated CRC.

The security works in Bluetooth Low Energy with two important concepts: pairing and bond-
ing, check the below sequence diagram showing the security process.

41 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Saving and Managing Peer Credentials

Figure 10-1: Security Process

Pairing is the combination of Phases 1 and 2. Bonding is represented by Phase 3 of the process.
One important thing to note is that Phase 2 is the only phase that differs between LE Legacy
Connections and LE Secure Connections.

Pairing and Bonding:

Phase 1:

In this phase, the slave may request the start of the pairing process. The master initiates the
pairing process by sending a pairing request message to the slave, which then responds with a
pairing response message.

The pairing request and pairing response messages represent an exchange of the features sup-
ported by each device, as well as the security requirements for each device. Each of these mes-
sages include the following:

* |nput Output (I0) capabilities: display support, keyboard support, yes/no input support.

= Qut-Of-Band (OOB) method support.

= Authentication requirements: includes MITM protection requirement, bonding require-
ment, secure connections support.

= Maximum encryption key size that the device supports.

» The different security keys each device is requesting to use.

42 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Saving and Managing Peer Credentials

Phase 2:

Phase2 differs based on which method is used: LE secure connections or LE legacy connec-
tions.

Legacy Connections:

In legacy connections, there are two keys used: the temporary key (TK) and the short term key
(STK). The TK is used along with other values exchanged between the two devices to generate
the STK.

Secure Connections:

In secure connections, the pairing method does not involve exchanging keys over the air
between the two devices. Rather, the devices utilize the ECDH protocol to generate a public/
private key pair. The devices then exchange the public keys only, and from that a shared secret
key called the long term key (LTK) is generated.

Phase 3:

Phase 3 represents the bonding process. This is an optional phase that is utilized to avoid the
need to re-pair on every connection to enable a secure communication channel. The result of
bonding is that each device stores a set of keys that can be used in each subsequent connec-
tion and allows the devices to skip the pairing phase. These keys are exchanged between the
two devices over a link that's encrypted using the keys resulting from phase two.

The following APIs represent the pairing and bonding of slave device

/*! \brief Data type for SMP_MSG_API_PAIR REQ and SMP_MSG_API_PAIR RSP */
typedef struct
{

wsfMsgHdr_t hdr; /*'< \brief Message header */

uint8_t oob; /*!'< \brief Out-of-band data present flag */
uint8_t auth; /*!'< \brief authentication flags */

uint8_t iKeyDist; /*!< \brief Initiator key distribution flags */
uint8_t rKeyDist; /*!'< \brief Responder key distribution flags */

} smpDmPair_ t;

/**/
/%1

* \brief This function is called by a slave device to proceed with pairing after a

* DM _SEC_PAIR _IND event is received.

*

* \param connId DM connection ID.

* \param oob Out-of-band pairing data present or not present.
* \param auth Authentication and bonding flags.

* \param iKeyDist 1Initiator key distribution flags.

43 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Saving and Managing Peer Credentials

* \param rKeyDist Responder key distribution flags.

*

* \return None.

*/
/**/

void DmSecPairRsp (dmConnId t connld, bool_t oob, uint8 t auth, uint8 t iKeyDist,
uint8_t rKeyDist);

/**@}*/

/** \name App Security and Bonding Functions

* Security and Bonding functions for configuration and interaction with \ref STACK_ SMP
* Pairing procedures.

*/
/**@{*/

/**/

/*1
* \brief Set the bondable mode of the device.

*

* \param bondable TRUE to set device to bondable, FALSE to set to non-bondable.

*

* \return None.
*/

/**/

void AppSetBondable (bool_t bondable) ;

/**/
/*1
* \brief Initiate a request for security as a slave device.This function will send a

message to the master peer device requesting security. The master device

* should either initiate encryption or pairing.
*

* \param connld Connection identifier.

*

* \return None.
*/

/**/

void AppSlaveSecurityReq(dmConnId_t connId) ;

/**/

/*1
* \brief Clear all bonding information on a slave device and make it bondable.

*

* \return None.
*

44 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Saving and Managing Peer Credentials

* \Note This API should not be used when Advertising (other than periodic

* advertising) is enabled. Otherwise, clearing the resolving list in the
* Controller may fail.
*/

/**/

void AppSlaveClearAllBondingInfo (void) ;

If no connection as a slave, do the following procedure to pair and bond.

/* start or restart advertising */
AppAdvStart (APP_MODE_AUTO_INIT) ;

/* enter discoverable and bondable mode mode */
AppSetBondable (TRUE) ;
AppAdetart(APP_MODE_DISCOVERABLE);

/* clear all bonding info */
AppSlaveClearAllBondingInfo() ;
/* restart advertising */
AppAdvStart (APP_MODE_AUTO_INI T) ;

45 A-SOCAPG-UGGAO3EN v1.0

Adding the Customized
Service (CUSTS)

A Customized Service is created as a template service which consists of 4 sample
characteristics:

= Write Only Sample Characteristic
= Read Only Sample Characteristic
» Notification Sample Characteristic
» |ndication Sample Characteristic

Find the service implementation in the following files:

<AmbigSuite root>/ambiq ble/services/svc_cust.h
<AmbigSuite_ root>/ambiq ble/services/svc_cust.c

At the beginning of svc_cust.h, a macro define INCLUDE_USER_DESCR is defined which
includes Characteristic User Description. This is optional.

Along with the above service implementation, the way to use the service is implemented in the
following file. Through the APIs provided in this file, the application can manipulate the service
easily.

<AmbigSuite_ root>/ambiq ble/profiles/custss/custss _main.c

In order to add this customized service into the project, refer to the ble_freertos_fit example
project from AmbiqgSuite SDK. The ble_freertos_fit example is already implemented with DIS
and BAS Services. Connect to DUT (an Apollo Blue series board with the Fit Example loaded).
The output is shown in Figure 11-1 on page 47.

46 A-SOCAPG-UGGAO3EN v1.0

https://www.bluetooth.com/specifications/gatt/descriptors/
https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/

Apollo3 and Apollo4 Family BLE User’s Guide Adding the Customized Service (CUSTS)

Figure 11-1: The Apollo Blue Series Boards with Fit Example Output

Devices DISCONNECT
BONDED ADVERTISER FIT_
CONNECTED -
s CLIENT SERVER 3

Generic Access

UUID: 0x1800
PRIMARY SERVICE

Generic Attribute
UUID: 0x1801
PRIMARY SERVICE

Heart Rate
UUID: 0x180D
PRIMARY SERVICE

Device Information
UUID: 0x180A
PRIMARY SERVICE

Battery Service
UUID: 0x180F
PRIMARY SERVICE

Running Speed and Cadence
UuUID: 0x1814
PRIMARY SERVICE

47 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Adding the Customized Service (CUSTS)

The below code snippet shows how to add customized service to the ble_freertos_fit exam-
ple project. The Custom service code added under TUTORIAL_ADDING_CUSTS macro.

@File: AmbiqgSuite\third party\cordio\ble-profiles\sources\apps\fit\fit main.c
// Custom service

+ #ifndef TUTORIAL_ADDING_CUSTS

+ #include "ambiq ble/services/svc_cust.h"

+ #include "ambiq ble/profiles/custss/custss_api.h"

+ #endif

/*! WSF message event enumeration */

enum

{
FIT HR TIMER IND = FIT MSG_START, /*! Heart rate measurement timer expired */
FIT BATT TIMER IND, /*! Battery measurement timer expired */
FIT RUNNING TIMER IND, /*! Running speed and cadence measurement

timer expired */
+ #ifndef TUTORIAL ADDING_ CUSTS
+ FIT_CUST_TIMER IND
+ #endif
}i

/*! enumeration of client characteristic configuration descriptors */

enum
{
FIT GATT_SC_CCC_IDX, /*! GATT service, service changed characteristic */
FIT HRS HRM CCC_IDX, /*! Heart rate service, heart rate monitor characteristic */
FIT BATT LVL CCC_IDX, /*! Battery service, battery level characteristic */
FIT RSCS_SM CCC_IDX, /*! Running speed and cadence measurement characteristic */

+ $#ifndef TUTORIAL_ADDING_CUSTS
+FIT_CUST SS_CCC_IDX,

+ {#endif

FIT_NUM CCC_IDX

}i

/*! client characteristic configuration descriptors settings, indexed by above enumera-
tion */

static const attsCccSet_t fitCccSet[FIT NUM CCC_IDX] =

{

/* ccecd handle value range security level */
{GATT_SC_CH_CCC_HDL, ATT CLIENT CFG_INDICATE, DM SEC_LEVEL_NONE},
/* FIT_GATT SC_CCC_IDX */
{HRS_HRM CH CCC_HDL, ATT_CLIENT CFG_NOTIFY, DM_SEC_LEVEL_NONE},
/* FIT_HRS_HRM CCC_IDX */
{BATT LVL CH CCC_HDL, ATT CLIENT CFG_NOTIFY, DM _SEC_LEVEL_NONE},
/* FIT_BATT LVL_CCC_IDX */
{RSCS_RSM_CH_CCC_HDL, ATT_CLIENT CFG_NOTIFY, DM_SEC_LEVEL NONE},

/* FIT RSCS_SM CCC_IDX */

+ #ifndef TUTORIAL ADDING CUSTS

+{ CUSTS_HANDLE NOTIFYONLY CCC, ATT CLIENT CFG_NOTIFY, DM_SEC_LEVEL_NONE}
/* FIT CUST SS CCC_IDX */

+ #endif

}i

48 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide

Adding the Customized Service (CUSTS)

static void fitProcMsg(fitMsg_t *pMsgqg)

{
uint8_t uiEvent = APP_UI_NONE;

switch (pMsg->hdr.event)
{

+ #ifndef TUTORIAL ADDING CUSTS

+ case FIT CUST TIMER IND:

+ CustssProcMsg (&pMsg->hdr) ;
+ break;

+#endif

}
void FitHandlerInit (wsfHandlerId_ t handlerId)
{
APP_TRACE INFOO ("FitHandlerInit");
/* initialize battery service server */
BasInit(handlerId, (basCfg_t *) &fitBasCfqg);
+ #ifndef TUTORIAL ADDING_CUSTS
+ /* initialize Custom service server */
+CustssInit (handlerId) ;
+ #endif
}

/**/

/* \brief Start the application.
* \return None.

*/

/**/

void FitStart(void)
{

SvcBattAddGroup () ;
SvcRscsAddGroup () ;
+ #ifndef TUTORIAL_ADDING_CUSTS
+SvcCustAddGroup () ;
+ $#endif

}

49

A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Adding the Customized Service (CUSTS)

Compile and flash the fit project on the Apollo Blue evaluation board with the above-men-
tioned Custom Service changes. Connect to DUT. The output is as shown in Figure 11-2. The

Custom Service is added as “Unknown Service”.

Figure 11-2: Custom Service Added as “Unknown Service”

Devices DISCONNECT ¢ = Devices DISCONNECT &

BONDED ADVERTISER FIT X

A0:5F-S5E7EFAT BONDED ADVERTISER FIV

40:5F.55:E7-EFAT

CONNECTED y
CLIENT SERVER
HOHUEL e CLIENT SERVER ¢}
P — BONDED
Generic Access —_—
m ;11 Al;x : ?,22 . Unknown Characteristic ;]
B : JUID: 00002760-08¢2-11€1-9073-0eBac72e2011

Generic Attribute Properties: READ

UUID: Dx1801 Descriptors:

PRIMARY SERVICE Characteristic User Description y 4

Elar ke UUID: 0x2901

UUID: 0x180D e oW

Bl aen dE gk Unknown Characteristic = X
JUID: 00002760-08c2-11€1-9073-0eBac72e2012

Device Information Properties: NOTIFY, READ

UUID: 0x180A Descriptors:

PISANY SRS Client Characteristic Configuration il

Battery Service JUID: 0x2902

UUID: OX180F Characteristic User Description 4 ¢

PRIMARY SERVICE JUID: 0x2901

Unknown Service Unknown Characteristic L2y -

TRPEE SIONZ750/00 €218 10025 NMRACT 202000 UUID: 00002760-08c2-11€1-9073-0eBac7262013

PRIMARY SERVICE
Properties: INDICATE, READ

Running Speed and Cadence Descriptors:

UUID: 0x1814 Client Characteristic Configuration 4

PRIMARY SERVICE e UUID: 02902 -
Characteristic User Description y 4
UUID: 0x2901

50 A-SOCAPG-UGGAO3EN v1.0

L2CAP CoC Feature Example

The L2CAP Connection-oriented Channel (CoC) is used to establish a secure outgoing connec-
tion to a remote device with the same dynamic protocol/service multiplexer (PSM) value. The
supported Bluetooth transport is LE only. LP2CAP CoC communication bypasses the host pro-
tocol and communicates with the link layer directly, reducing communication overhead.

The ble_freertos_peripheral_l2cap_coc SDK example demonstrates the CoC connection
and Data transmission/reception through the particular PSM and Channel Identifier(CID).

Following is the test procedure to verify L2CAP CoC feature:

1. Flash ble_freertos_peripheral_l2cap_coc example on the blue version of all Apollo4
series EVB's from AmbiqSuite SDK, it acts as a peripheral and advertise as peripheral_coc.

2. For testing purposes, use the ble_freertos_watch example and flash the binary on a sec-
ond Apollo4 Blue family EVB.

NOTES:

a. Modify the SDK ble_freertos_watch example’s radio_task.c (ble_freer-
tos_watch\src\) file as shown below based on the ble_freertos_peripher-
al_l2cap_coc example’s PSM and CID to understand the demo.

b. The L2CAP CoC CID’s range should be 0x0040-0x007F and the PSM'’s range
should be 0x0080-0x00FF.

¢. Inthe following code, the L2CAP CoC register is used to register a connection-
oriented channel, as either a channel acceptor, initiator, or both. If registering as
a channel acceptor, then the PSM is specified. After registering, a connection
can be established by the client using this registration instance.

d. The L2CAP CoC callback function is used to verify the CoC data from peripheral
to central.

51 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide L2CAP CoC Feature Example

The function listings below contain modifications to the ble_freertos_watch SDK example
to add the L2CAP CoC feature.

File@ ble_freertos_watch\src\radio_task.c
+ 12cCocRegId_t adaptCoCId;
+/**/

+/*!
+ * \brief The L2CAP CoC callback function.

\param pMsg Pointer to message structure.

\return None.

+ + 4+ + +

*/
+/**/
+ void adaptConnectionCallback (12cCocEvt_t *pMsg)

+{

+

switch (pMsg->hdr.event)
{
case L2C_COC_CONNECT IND:
APP_TRACE_INFOL ("watch-L2C_COC_CONNECT IND[%$s]", _ func_);
break;
case L2C_COC_DISCONNECT IND:
APP_TRACE_INFO1 ("watch-L2C_COC_DISCONNECT IND[%s]", _ func_);
break;
case L2C_COC_DATA IND:
APP_TRACE_INFOl (""watch-L2C_COC _DATA_IND[%s]", _ func_);
for (uint8_t i=0; i<pMsg->datalnd.datalLen; i++)
am util stdio_printf("%02x ", pMsg->datalnd.pDatal[il]):;
am util stdio_printf ("\r\n");
break;
case L2C_COC_DATA CNF:

SRR T T I S S S R

APP_TRACE_INFO1 ("watch-L2C_COC_DATA CNF[%s]", _ func);
break;
default:
break;
}
}

+ + 4+ + + +

//***

// Initialization for the ExactLE stack.
//***
Void exactle_stack_init(void)

{

handlerId = WsfOsSetNextHandler (L2cSlaveHandler) ;
L2cSlaveHandlerInit (handlerId) ;

L2cInit();

L2cSlaveInit();

L2cMasterInit () ;

+ // L2CAP CoC Registration

+ handlerId = WsfOsSetNextHandler (L2cCocHandler) ;
+ L2cCocHandlerInit (handlerId) ;

+ L2cCocInit();

+ 12cCocReg_t ConnectionRegistration;

52 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide L2CAP CoC Feature Example

+ ConnectionRegistration.psm 0x80; // Protocol service multiplexer
+ ConnectionRegistration.mtu 251; // Maximum receive data packet size
+ ConnectionRegistration.mps = 251; // Maximum receive PDU fragment size
+ ConnectionRegistration.credits = 10; // Data packet receive credits for this channel
+ ConnectionRegistration.authoriz = FALSE; // TRUE if authorization is required
+ ConnectionRegistration.secLevel = 0; // Channel minimum security level requirements
+ ConnectionRegistration.role = (L2C_COC_ROLE INITIATOR | L2C_COC_ROLE_ ACCEPTOR) ;
/ /Channel initiator/acceptor role

+ adaptCoCId = L2cCocRegister (adaptConnectionCallback, &ConnectionRegistration);

+ am_util stdio_printf("L2Cap CoC Register: %d\r\n", adaptCoCId) ;

3. After making the ble_freertos_watch radio_task.c file modifications, compile and flash
the ble_freertos_watch example to the second Apollo4 Blue EVB.

4. The EVB with the ble_freertos_watch firmware acts as the master, after button 2 is
pressed.

5. Once the ble_freertos_watch SWO log scan list shows the peripheral_coc, the EVB auto-
matically connects to peripheral_coc.

6. Both the output SWO logs should be checked to verify that the CoC connection was estab-
lished and was able to send data after the successful connection of the peripheral to cen-
tral.

Figure 12-1 shows the SWO log with the watch example receiving the CoC data(test_-
data[] = {0x12, 0x34, 0x56, 0x78, 0xAB};) from the ble_freertos_peripheral_l2cap_coc
example.

Figure 12-1: SWO Log with the Watch Example Received

(3] [} SEGGER J-Link SWO Viewer V7.20a - o X
File Edit Help
31 24 23 16 15 8 7 [31 24 23 16 15 8 7 0
Data from stmulus pert(e): (11000 OO0 0000 00000000 O0O00000= Data from stimulus pert(s): 1110000 COOOO00O00O0 OOO0O0O0O0 00000004
(] stay on Top Clear Resume [stay onTop Clear
SmpbbGetREcord: connld: 1 type: © 7|
watch got evt 87 *|,|| smpobaddoevice
:mtch got evt 22 smpDbGetPairingdisabledTime: connld: 1 period: @ attemptwult: @
Negotisted MTU 247 12¢chancballoc cid=@xeese
LE meta sub evenyls 12¢ Coc req, reties
watch got eviiied
12CocDataRe : sdulen:S len:7 1| 3»> connection opened <cc
atch. 0C_DaTA_IND- [adaptConnectionCallback]) App got evt 2
attsProcMtuReq features exee
Negotiated MTU 247
watch got evt & LE meta sub event « ax4
connIdsl idleMask«@x0ees remote feature: @x21, DLE:@x2e
attcMsgChback: msg: #x slot: ex Remote device support DLE
watch got evt 3 L2C_COC_CONNECT_IND- [ConnectionCallback]
found service startMdlsex1@ endudls@xffff cldited
AtteDiscServiceCmpl status exee
attcMsgback: msg: #x slot: #x
watch got evt 4 12cCocApiDataReq sduLen:5 peerdps:247
characteristic found handle:ex12 L2C_COC_DATA_CNF- [ConnectionCallback]
characteristic found handle:ex1s LE meta sub event = 9x7
ir:rzlstfbarfvmi status ex79 data length exchange, status= @, maxRXLen= 251, maxTXlen= 251

53 A-SOCAPG-UGGAO3EN v1.0

Bluetooth Low Energy
Controller Firmware Update

NOTE: This Bluetooth Low Energy firmware update section is applicable only for Apollo4
Blue SoC family.

Apollo4 Blue devices are shipped pre-programmed with a Secure Bootloader (SBL) and con-
troller firmware. Updates for the controller firmware are provided in AmbiqSuite releases or in
the Ambiq time, u Support Center as a Knowledge Base article. This section describes the Blue-
tooth Low Energy controller firmware update procedure.

The SBL and the controller application are flashed in the Bluetooth Low Energy Controller.
The SBL is used for the controller firmware authentication and update.

After initializing the 32 MHz and 32 kHz clocks for the controller and the SPI for the SoC-con-
troller communication, the Apollo4 SoC application will perform a hand-shake operation
with the controller SBL.

The Bluetooth Low Energy Controller raises an IRQ to the Apollo4 SoC/Host to start the
booting process. In response to the IRQ, the Apollo4 SoC/Host sends a HELLO command.

In response to the HELLO, the Bluetooth Low Energy Controller responds with the STATUS
indicating the current firmware version number and its boot status.

If there is a corrupted image or no image at all, the Controller responds with the version
number as OXFFFF FFFF. Otherwise, it responds with the version of the current firmware.

After receiving the version number, Apollo4 SoC starts the recovery process and downloads
valid firmware to Controller if updating is needed.

Lastly, the Apollo4 SoC sends the RESET command. The Controller SBL will jump to the firm-
ware after receiving the RESET command.

54 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Bluetooth Low Energy Controller Firmware Update

The controller firmware is released as a C code array defined in the ble_fw_image.h and the
latest one is put in the SDK folder:

AmbiqSuite\third_party\cordio\ble-host\sources\hci\ambiq\cooper

Figure 13-1: Controller Firmware Update Flow

Apollod ANMEBLES1
L Controller

HELLO

STATUS

UPDATE

ACK/NACK

DATA

ACK/NACK

DATA

ACK/NACK

RESET

ACK

The Apollo4 series AmbiqgSuite SDK contains ble_firmware_update example project to
update Bluetooth Low Energy controller firmware update.

Firmware Update Procedure:

The ble_firmware_update example is used to update the built-in BLE firmware in the Blue-
tooth Low Energy Controller. Generally, the Apollo4 SoC Bluetooth LE application checks
whether there is newer firmware that needs to be updated, which is done during the Controller
SBL hand-shaking stage. If the version rollback feature is enabled, it also permits the applica-
tion to downgrade the controller firmware to an older version. This example demonstrates a
forced update for the controller firmware.

1. Enter the SDK folder \boards\apollo4b_blue_evb\examples\ble\ble_firmware_update
and build the ble_firmware_update.bin.

2. Download the ble_firmware_update.bin file to the EVB and wait for a few seconds for it to
finish updating the Cooper firmware.

Figure 13-2 on page 56 shows the SWO output for the successful BLE firmware update.

55 A-SOCAPG-UGGAO3EN v1.0

Apollo3 and Apollo4 Family BLE User’s Guide Bluetooth Low Energy Controller Firmware Update

Figure 13-2: SWO Output for the Successful BLE Firmware Update

SEGGERJ-Link SWO Viewer V6.82b . O X
File Edit Help
31 2423 1615 87 0
Data from stimulus por{ [T TTTT J[TTTTITTITITITITIITTIITI»
[] Stay on Top Clear Pause
)

BLE Firmware Update Application
BLE Controller Info:

FW Ver: 1l-alEd

Chip 1ID@: Bx64150808

Chip ID1: 0x8191c02c

Received new BLE Controller FW version = 1.20.2.0 Going for upg
BLE controller upgrade in progress, wait...
BLE Controller Init Done

*x%%%*Reset cooper to do a forcing upgrade*****
BLE Controller Info:

FW Ver: 1.20.2.0
Chip ID@: Px64150808
Chip ID1: 0x8191c02c

BLE Controller Requires FW
BLE controller upgrade in progress, wait...
Update Done

BLE Firmware Update Application Done! v

< >
Configuration applied Device: AMAP42KK-KBR CPUFreq: 95735 kHz SWOFrec

56 A-SOCAPG-UGGAO3EN v1.0

Q) ambia

© 2024 Ambiq Micro, Inc. All rights reserved.

6500 River Place Boulevard, Building 7, Suite 200, Austin, TX 78730
www.ambig.com
sales@ambig.com
+1(512) 879-2850

A-SOCAPG-UGGAO3EN v1.0
January 2024

	Introduction
	Overview
	Figure 2-1 : Apollo4 Bluetooth Low Energy Controller Core and Radio Subsystems
	Figure 2-2 : Apollo4 Buck-enabled Configuration
	Figure 2-3 : Block Diagram for the Apollo3 Blue Bluetooth Low Energy Controller
	Figure 2-4 : Apollo3 Blue Buck-enabled Configuration

	Software Stack and Main Functions
	Figure 3-1 : Software Components in Bluetooth Low Energy Module
	3.1 LE Host Stack
	Figure 3-2 : LE Host Stack

	3.2 Bluetooth Low Energy in the AmbiqSuite SDK
	1. Initialize the SPI module, enable crystals such as XTAL32M and XTAL32K for the Bluetooth Low Energy Controller.
	2. Set the default Bluetooth Low Energy TX output power.
	3. Register Bluetooth Low Energy Controller IRQ pin ISR and ClkReq pin ISR.
	4. For a cold boot, use the Apollo’s device ID to form Bluetooth address.
	1. Set up timers for the WSF (Wireless Software Foundation) scheduler with WsfOsInit(), and WsfTimerInit().
	2. Initialize a buffer pool for WSF dynamic memory needs.
	3. Initialize the WSF security service by calling SecInit(), SecAesInit(), SecCmacInit(), SecEccInit().
	1. Register for stack callbacks.
	2. Register for app framework callbacks.
	3. Initialize attribute server database.
	4. Set service changed CCCD index.
	5. Set running speed and cadence features.
	6. Reset the device.
	3.3 Configuring the ATT Maximum Transmission Unit (MTU)

	Clocking
	4.1 Clock Sources
	4.1.1 Configure CLKREQ GPIO
	Figure 4-1 : Configuring CLKREQ GPIO
	Figure 4-2 : Wake Event Sequence
	1. The Bluetooth Low Energy controller utilizes an internal 32 MHz RC oscillator signal (RC32M) to assert CLKREQ.
	2. The Apollo4 SoC initiates XTAL32M startup after receiving the CLKREQ interrupt.
	3. XTAL32MHz is stable after ‘t1’ delay time and available to output to XO32M of the BLE controller.
	4. The Bluetooth Low Energy controller switches to use XTAL32M after asserting CLKREQ for ‘t2’ delay.
	1. The Bluetooth Low Energy controller switches to use the low-frequency clock and de-asserts CLKREQ.
	2. The SoC gates XTAL32M and optionally powers down XTAL32M.

	4.2 Clock Configuration
	4.2.1 Configure CLKREQ GPIO
	4.2.2 Initialize CLKREQ Interrupt Service
	4.2.3 Initialize XTAL32MHz Startup
	4.2.4 Wakeup Time Configuration

	32 MHz Crystal Calibration
	Vendor-Specific HCI Commands for BLE Controller
	6.1 HciVscSetRfPowerLevelEx
	6.2 HciVscSetTraceBitMap
	6.3 HciVscUpdateFw

	6.4 HciVscReadReg
	6.5 HciVscWriteReg
	6.6 HciVscGetDeviceId
	6.7 HciVscUpdateNvdsParam
	6.8 HciVscUpdateLinklayerFeature

	Bluetooth Low Energy MAC Address
	Enabling the BLE Resolvable Private Address Resolution
	1. Pairing Apollo SDK fit example with phone.
	2. Disconnect the connection, and then the Apollo fit example will advertise using RPA.

	Different Types of Advertising
	Saving and Managing Peer Credentials
	Figure 10-1 : Security Process

	Adding the Customized Service (CUSTS)
	Figure 11-1 : The Apollo Blue Series Boards with Fit Example Output
	Figure 11-2 : Custom Service Added as “Unknown Service”

	L2CAP CoC Feature Example
	1. Flash ble_freertos_peripheral_l2cap_coc example on the blue version of all Apollo4 series EVB’s from AmbiqSuite SDK, it acts as a peripheral and advertise as peripheral_coc.
	2. For testing purposes, use the ble_freertos_watch example and flash the binary on a second Apollo4 Blue family EVB.
	a. Modify the SDK ble_freertos_watch example’s radio_task.c (ble_freertos_watch\src\) file as shown below based on the ble_freertos_peripheral_l2cap_coc example’s PSM and CID to understand the demo.
	b. The L2CAP CoC CID’s range should be 0x0040-0x007F and the PSM’s range should be 0x0080-0x00FF.
	c. In the following code, the L2CAP CoC register is used to register a connection- oriented channel, as either a channel acceptor, initiator, or both. If registering as a channel acceptor, then the PSM is specified. After registering, a connection ca...
	d. The L2CAP CoC callback function is used to verify the CoC data from peripheral to central.
	3. After making the ble_freertos_watch radio_task.c file modifications, compile and flash the ble_freertos_watch example to the second Apollo4 Blue EVB.
	4. The EVB with the ble_freertos_watch firmware acts as the master, after button 2 is pressed.
	5. Once the ble_freertos_watch SWO log scan list shows the peripheral_coc, the EVB automatically connects to peripheral_coc.
	6. Both the output SWO logs should be checked to verify that the CoC connection was established and was able to send data after the successful connection of the peripheral to central.
	Figure 12-1 : SWO Log with the Watch Example Received

	Bluetooth Low Energy Controller Firmware Update
	Figure 13-1 : Controller Firmware Update Flow
	1. Enter the SDK folder \boards\apollo4b_blue_evb\examples\ble\ble_firmware_update and build the ble_firmware_update.bin.
	2. Download the ble_firmware_update.bin file to the EVB and wait for a few seconds for it to finish updating the Cooper firmware.

	Figure 13-2 : SWO Output for the Successful BLE Firmware Update

