ARM® Cordio WSF

ARM-EPM-115975 1.0

Software Foundation API

Confidential

ARM

Copyright © 2015, 2016 ARM. All rights reserved. Page
Confidential



WSF API

ARM® Wireless Software Foundation API

Reference Manual
Copyright © 2015, 2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change

25 September 2015 - Non-Confidential First Wicentric release for 1.3 as 2009-0003.
1 March 2016 A Confidential Draft ~ First ARM release for 1.3.

24 August 2016 A Confidential AUSPEX #

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any
form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to
any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the
information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology
or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or
creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for
publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this
document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or
understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to
create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without
notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version
of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.
Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2015, 2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

Copyright © 2015, 2016 ARM. All rights reserved. Page 2

Confidential



WSF API

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status

This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with
the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address
http://www.arm.com

Copyright © 2015, 2016 ARM. All rights reserved. Page 3

Confidential



Contents

ARM® Cordio WSF

1 Preface

1.1 About this book

1.2

1.1.1Intended audience

1.1.2 Using this book
1.1.3Terms and abbreviations
1.1.4Conventions

1.1.5 Additional reading
Feedback

1.2.1 Feedback on content

2 Introduction

3 Portable Data Types

4 Buffers

4.1

4.2

4.3
4.4

Data Types

4.1.1 wsfBufPoolDesc_t
Functions

4.2.1 WsfBuflnit()

4.2.2 WsfBufAlloc()
4.2.3WsfBufFree()
Diagnostic Macros
Diagnostic Functions

4.4.1 WsfBufGetMaxAlloc()
4.4.2 WsfBufGetNumAlloc()
4.4.3 WsfBufGetAllocStats()

4.4.4 WsfBufGetPolStats()

Copyright © 2015, 2016 ARM. All rights reserved.

Confidential

Wireless Software Foundation API

10
11
11
11

12

14

15

16
16
16
16
16
16
16
17
17
17
17
17

18

Page 4



5 Queues

5.1

5.2

Data Types
5.1.1wsfQueue_t
Functions
5.2.1WSF_QUEUE_INIT()
5.2.2WsfQueueEnq()
5.2.3WsfQueueDeq()
5.2.4 WsfQueuePush()
5.2.5WsfQueuelnsert()
5.2.6 WsfQueueRemove()
5.2.7 WsfQueueCount()

5.2.8 WsfQueueEmpty()

6 Messages

6.1

Functions

6.1.1 WsfMsgAlloc()
6.1.2 WsfMsgFree()
6.1.3 WsfMsgSend()
6.1.4 WsfMsgEnq()
6.1.5 WsfMsgDeq()

6.1.6 WsfMsgPeek ()

7 Timers

7.1

7.2

Data Types
7.1.1wsfTimer _t
Functions
7.2.1WsfTimerlnit()
7.2.2\WsfTimerStartSec()
7.2.3WsfTimerStartMs()

7.2.4WsfTimerStop()

Copyright © 2015, 2016 ARM. All rights reserved.

Confidential

Wireless Software Foundation API

19
19
19
19
19
19
19
20
20
20
20

21

22
22
22
22
22
22
23

23

24
24
24
24
24
24
25

25

Page 5



10

11

12

13

7.2.5WsfTimerUpdate()

7.2.6 WsfTimerNextExpiration()

7.2.7WsfTimerServiceExpired()

Event Handlers

8.1 Data Types
8.1.1wsfMsgHdr_t

8.2 Functions
8.2.1 (*wsfEventHandler_t)()
8.2.2 WsfSetEvent()

8.2.3WsfOsSetNextHandler()

Critical Sections

9.1 Macros
9.1.1WSF_CS_INIT()
9.1.2WSF_CS_ENTER()

9.1.3WSF_CS_EXIT()

Task Schedule Locking
10.1 Functions
10.1.1 WsfTaskLock()

10.1.2 WsfTaskUnlock()

Assert
11.1 Macros
11.1.1 WSF_ASSERT()

11.1.2 WSF_CT_ASSERTY()
Trace

Security
13.1 Data Types

13.1.1 wsfSecMsg_t

Copyright © 2015, 2016 ARM. All rights reserved.

Confidential

Wireless Software Foundation API

25
25
25

27
27
27
27
27
27

28

29
29
29
29

29

30
30
30
30

31
31
31
31

32

33
33
33

Page 6



Wireless Software Foundation API

13.1.2 wsfSecEccKey t 33

13.1.3 wsfSecEccSharedSec t 33
13.1.4 wsfSecEccMsg_t 33
13.2 Functions 33
13.2.1 WsfSeclnit() 34
13.2.2 WsfSecRandlInit() 34
13.2.3 WsfSecAesinit() 34
13.2.4 WsfSecCmacinit() 34
13.2.5 WsfSecEcclInit() 34
13.2.6 WsfSecAes() 34
13.2.7 WsfSecCmac() 35
13.2.8 WsfSecEccGenKey() 35
13.2.9 WsfSecEccGenSharedSecret() 35
13.2.10 WsfSecRand() 36
Copyright © 2015, 2016 ARM. All rights reserved. Page 7

Confidential






Wireless Software Foundation API

1 Preface

This preface introduces the Wireless Software Foundation APl Reference Manual.

1.1 About this book

This document describes the Wireless Software Foundation (WSF) API and lists the API functions and
their parameters.

1.1.1 Intended audience

This book is written for experienced software engineers who might or might not have experience with
ARM products. Such engineers typically have experience of writing Bluetooth applications but might
have limited experience of the Cordio software stack.

It is also assumed that the readers have access to all necessary tools.

1.1.2 Using this book
This book is organized into the following chapters:

e Introduction
Read this for an overview of the API.
e Portable Data Types
Read this for a list of data types used in the API.

e Buffers
Read this for a description of the buffer service functions.
e Queues
Read this for a description of the queue service functions.
e Messages
Read this for a description of the message service used to pass messages to WSF event
functions.
e Timers

Read this for a description of the timer service functions.
e Event Handlers
Read this for a description of the WSF event handlers receive events, message, and timer
expirations from other components in the service.
e Critical Sections
Read this for a description of the critical section macros used in code which might be executed
in an interrupt context.
e Task Schedule Locking
Read this for a description of the interfaces for locking and unlocking task scheduling.
o Assert
Read this for a description of the macros used for testing and debugging.

e Trace

Read this for a description of the trace macros used for trace diagnostics.
e Security

Read this for a description of the security service functions.
e Revisions

Read this chapter for descriptions of the changes between document versions.

Copyright © 2015, 2016 ARM. All rights reserved. Page 9

Confidential



Wireless Software Foundation API

1.1.3 Terms and abbreviations
For a list of ARM terms, see the ARM glossary.

Terms specific to the Cordio software are listed below:

Term Description

ACL Asynchronous Connectionless data packet

AD Advertising Data

ARQ Automatic Repeat reQuest

ATT Attribute Protocol, also attribute protocol software subsystem

ATTC Attribute Protocol Client software subsystem

ATTS Attribute Protocol Server software subsystem

CCCor CCCD Client Characteristic Configuration Descriptor

CID Connection Identifier

CSRK Connection Signature Resolving Key

DM Device Manager software subsystem

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JIT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

0OO0B Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem

SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.
Copyright © 2015, 2016 ARM. All rights reserved. Page 10

Confidential


http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

1.1.4 Conventions

Wireless Software Foundation API

The following table describes the typographical conventions:

Style

Italic

bold

MONOSPACE

MONOSPACE

monospace italic

monospace bold

<and>

SMALL CAPITALS

1.1.5 Additional reading

Typographical conventions
Purpose

Introduces special terminology, denotes cross-references, and
citations.

Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

Denotes language keywords when used outside example code.

Encloses replaceable terms for assembler syntax where they
appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Used in body text for a few terms that have specific technical
meanings, that are defined in the ARM® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,
and UNPREDICTABLE.

This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

¢ Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

Copyright © 2015, 2016 ARM. All rights reserved. Page 11

Confidential


http://infocenter.arm.com/

Wireless Software Foundation API

1.2.1 Feedback on content
If you have comments on content then send an e-mail to errata@arm. com. Give:

The title.

The number, ARM-EPM-115156.

The page numbers to which your comments apply.
A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.

Copyright © 2015, 2016 ARM. All rights reserved. Page 12

Confidential






Wireless Software Foundation API

2 Introduction
This document describes the Wireless Software Foundation (WSF) API.

WSF is a simple OS wrapper, porting layer, and general-purpose software service used by the Cordio
embedded software system.

The goal of WSF is to stay small and lean, supporting only the basic services required by the system. It
consists of the following:

Event handler service with event and message passing.

Timer service.

Queue and buffer management service.

Portable data types.

Critical sections and task locking.

Trace and assert diagnostic services.

Security interfaces for encryption and random number generation.

WSF does not define any tasks but defines some interfaces to tasks. It relies on the target OS to
implement tasks and manage the timer and event handler services from target OS tasks. WSF can also
act as a simple standalone OS in software systems without an existing OS.

Copyright © 2015, 2016 ARM. All rights reserved. Page 14

Confidential



Wireless Software Foundation API

3 Portable Data Types

WSF defines the following portable data types in file wsf_types.h. These data types are used
throughout the software system.

Table 1 Integer types

Name Description
int8_t 8 bit signed integer
uint8_t 8 bit unsigned integer
intle_t 16 bit signed integer
uintlée_t 16 bit unsigned integer
int32_t 32 bit signed integer
uint32_t 32 bit unsigned integer
uint64_t 64 bit unsigned integer
bool_t Boolean integer
Copyright © 2015, 2016 ARM. All rights reserved. Page 15

Confidential



Wireless Software Foundation API

4 Buffers

The WSF buffer management service is a pool-based dynamic memory allocation service. The buffer
service interface is defined in file wsf_buf.h.

4.1 Data Types

4.1.1 wsfBufPoolDesc_t
This is buffer pool descriptor structure. It is used by function WsfBufInit().

Type Name Description
uintlé_t Ten Length of buffers in pool.
uint8_t num Number of buffers in pool.

4.2 Functions

4.2.1 WsfBuflnit()
Initialize the buffer pool service. This function should only be called once upon system initialization.

Syntax:

uintle_t WsfBufInit(uintle_t bufMemLen, uint8_t *pBufMem, uint8_t numPools,
wsfBufPoolDesc_t *pDesc)

Where:
e bufMemLen: Length in bytes of memory pointed to by pBufMem.
e pBufMem: Memory in which to store the pools used by the buffer pool service.
e numPools: Number of buffer pools.
e pDesc: Array of buffer pool descriptors, one for each pool

This function returns the amount of pBufMem used or O for failures.

4.2.2 WsfBufAlloc()
Allocate a buffer.

Syntax:
void *WsfBufAlloc(uintl6_t len)

Where:

e len: Length of buffer to allocate.
This function returns a pointer to the buffer or NULL if allocation fails.

4.2.3 WsfBufFree()
Free a buffer.

Copyright © 2015, 2016 ARM. All rights reserved. Page 16

Confidential



Wireless Software Foundation API

Syntax:
void WsfBufFree(void *pBuf)

Where:

e pBuf: Buffer to free.

4.3 Diagnostic Macros
The following macros are used for diagnostic purposes.

Table 2 Diaghostic macros

Name Value Description

WSF_BUF_FREE_CHECK TRUE, Assert if trying to free a buffer that is already free.
FALSE

WSF_BUF_ALLOC_FAIL_ASSERT TRUE, Set to TRUE to assert on buffer allocation failure.
FALSE

WSF_BUF_STATS TRUE, Set to TRUE to collect buffer allocation statistics.
FALSE

4.4 Diagnostic Functions

4.4.1 WsfBufGetMaxAlloc()
Diagnostic function to get maximum allocated buffers from a pool.

Syntax:
uint8_t WsfBufGetMaxAlloc(uint8_t pool)

Where:

e pool: Buffer pool number.
This function returns the number of allocated buffers.

4.4.2 WsfBufGetNumAlloc()
Diagnostic function to get the number of currently allocated buffers in a pool.

Syntax:
uint8_t WsfBufGetNumAlloc(uint8_t pool)

Where:

e pool: Buffer pool number.
This function returns the number of allocated buffers.

4.4.3 WsfBufGetAllocStats()
Diagnostic function to get the buffer allocation statistics.

Copyright © 2015, 2016 ARM. All rights reserved. Page 17

Confidential



Wireless Software Foundation API

The statistics contain a count of each call to WwsfBufATloc() for the requested buffer length.
Syntax:
uint8_t *WsfBufGetAllocStats(void)

The function returns a 128-byte array indexed by the length passed to WsfBufA1loc() with each
element containing the total number of calls to WsfBufA11oc () for that length.

4.4.4 WsfBufGetPolStats()
Get statistics for each pool.

Syntax:
uint8_t WsfBufGetPolStats(WsfBufPoolStat_t *pStat, uint8_t numPool)

Where:

e pStat: Buffer to store statistics.
e numPool: Number of pool elements.

This function returns the pool statistics in variable pStat.

Copyright © 2015, 2016 ARM. All rights reserved. Page 18

Confidential



Wireless Software Foundation API

5 Queues

The WSF queue service is a general purpose queue service that is used throughout the software system.
The queue service interface is defined in function wsf_queue.h.

5.1 Data Types

5.1.1 wsfQueue_t
Table 3 Queue data structure

Type Name Description
void * pHead Head of queue.
void * pTail Tail of queue.

5.2 Functions

5.2.1 WSF_QUEUE_INIT()
This macro initializes a queue structure.

Syntax:
WSF_QUEUE_INIT(pQueue)
Where:
e pBuf: Pointer to queue.

5.2.2 WsfQueueEnq()
Enqueue an element to the tail of a queue.

Syntax:
void WsfQueueEnq(wsfQueue_t *pQueue, void *pElem)

Where:

e pQueue: Pointer to queue.
e pElem: Pointer to element.

5.2.3 WsfQueueDeq()
Dequeue an element from the head of a queue.

Syntax:
void *WsfQueueDeq(wsfQueue_t *pQueue)

Where:

e pQueue: Pointer to queue.

Copyright © 2015, 2016 ARM. All rights reserved. Page 19

Confidential



Wireless Software Foundation API

This function returns a pointer to the element that has been dequeued or NULL if the queue is empty.

5.2.4 WsfQueuePush()
Push an element to the head of a queue.

Syntax:

void WsfQueuePush(wsfQueue_t *pQueue, void *pElem)

Where:

e pQueue: Pointer to queue.
e pElem: Pointer to element.

5.2.5 WsfQueuelnsert()
Insert an element into a queue.

This function is typically used when iterating over a queue.
Syntax:
void WsfQueueInsert(wsfQueue_t *pQueue, void *pElem, void *pPrev)

Where:

e pQueue: Pointer to queue.

e pElem: Pointer to element to be inserted.

e pPrev: Pointer to previous element in the queue before element to be inserted.
Note: set pPrev to NULL if pElem is first element in queue.

5.2.6 WsfQueueRemove()
Remove an element from a queue. This function is typically used when iterating over a queue.

Syntax:
void WsfQueueRemove(wsfQueue_t *pQueue, void *pElem, void *pPrev)

Where:

e pQueue: Pointer to queue.
e pElem: Pointer to element to be inserted.
e pPrev: Pointer to previous element in the queue before element to be removed.

5.2.7 WsfQueueCount()
Count the number of elements in a queue.

Syntax:
uintl6_t WsfQueueCount(wsfQueue_t *pQueue)

Where:

e pQueue: Pointer to queue.

Copyright © 2015, 2016 ARM. All rights reserved. Page 20

Confidential



Wireless Software Foundation API

This function returns the number of elements in the queue.

5.2.8 WsfQueueEmpty()
Test if queue is empty.

Syntax:
bool_t WsfQueueEmpty(wsfQueue_t *pQueue)

Where:

e pQueue: Pointer to queue.
This function returns TRUE if queue is empty, FALSE otherwise.

Copyright © 2015, 2016 ARM. All rights reserved. Page 21

Confidential



Wireless Software Foundation API

6 Messages

The WSF message service is used to pass messages to WSF event handlers.

The WSF message service is defined in file wsf_msg.h.

6.1 Functions

6.1.1 WsfMsgAlloc()
Allocate a message buffer to be sent with WsfMsgSend ().

Syntax:
void *WsfMsgAlloc(uintl6_t len)

Where:

e Ten: Message length in bytes.
This function returns a pointer to the message buffer or NULL if allocation failed.

6.1.2 WsfMsgFree()
Free a message buffer allocated with WsfMsgAT1loc().

Syntax:

void WsfMsgFree(void *pMsg)
Where:

e pMsg: Pointer to message buffer.

6.1.3 WsfMsgSend()
Send a message to an event handler.

Syntax:
void WsfMsgSend(wsfHandlerId_t handlerId, void *pMsg)

Where:

e handlerId: Event handler ID.
e pMsg: Pointer to message buffer.

6.1.4 WsfMsgEnq()
Enqueue a message.

Syntax:
void WsfMsgEnqg(wsfQueue_t *pQueue, wsfHandlerId_t handlerId, void *pMsg)

Where:

e pQueue: Pointer to queue.

Copyright © 2015, 2016 ARM. All rights reserved. Page 22

Confidential



Wireless Software Foundation API

e handerId: Set message handler ID to this value.
e pElem: Pointer to message buffer.

6.1.5 WsfMsgDeq()
Dequeue a message.

Syntax:
void *WsfMsgDeq(wsfQueue_t *pQueue, wsfHandlerId_t *pHandlerId)

Where:

e pQueue: Pointer to queue.
e pHandlerId: Handler ID of returned message; this is a return parameter.

This function returns a pointer to the message that has been dequeued or NULL if the queue is empty.

6.1.6 WsfMsgPeek ()
Get the next message without removing it from the queue.

Syntax:
void *WsfMsgPeek (wsfQueue_t *pQueue, wsfHandlerId_t *pHandlerId)

Where:

e pQueue: Pointer to queue.
e pHandlerId: Handler ID of returned message; this is a return parameter.

This function returns a pointer to the next message on the queue or NULL if the queue is empty.

Copyright © 2015, 2016 ARM. All rights reserved. Page 23
Confidential



Wireless Software Foundation API

7 Timers
The WSF timer service is used by WSF event handlers.

When a timer expires, the event handler associated with that timer is executed.
7.1 Data Types
This section describe the timer data types.

7.1.1 wsfTimer_t
Table 4 Timer data structure.

Type Name Description

wsfTimer_t * pNext Pointer to next timer in queue.
wsfTimerTicks_t ticks Number of ticks until expiration.
wsfHandlerId_t handlerId Event handler for this timer.

bool_t isStarted TRUE if timer has been started.
wsfMsgHdr_t msg Application-defined timer event parameters.

7.2 Functions
This section describe the timer functions.

7.2.1 WsfTimerlnit()
Initialize the timer service. This function should only be called once upon system initialization.

Syntax:
void WsfTimerInit (void)

7.2.2 WsfTimerStartSec()
Start a timer in units of seconds.

Before this function is called parameter pTimer->handlerld must be set to the event handler for this
timer and parameter pTimer->msg must be set to any application-defined timer event parameters.

Syntax:
void WsfTimerStartSec(wsfTimer_t *pTimer, wsfTimerTicks_t sec)

Where:

e pTimer: Pointer to timer.
e sec: Seconds until expiration.

Copyright © 2015, 2016 ARM. All rights reserved. Page 24

Confidential



Wireless Software Foundation API

7.2.3 WsfTimerStartMs()
Start a timer in units of milliseconds.

Syntax:
void WsfTimerStartMs(wsfTimer_t *pTimer, wsfTimerTicks_t ms)

Where:

e pTimer: Pointer to timer.
e ms: Milliseconds until expiration.

7.2.4 WsfTimerStop()
Stop a timer.

Syntax:

void WsfTimerStop(wsfTimer_t *pTimer)
Where:

e pTimer: Pointer to timer.

7.2.5 WsfTimerUpdate()
Update the timer service with the number of elapsed ticks.

This function is typically called only from WSF timer porting code.
Syntax:

void WsfTimerUpdate(wsfTimerTicks_t ticks)
Where:

e ticks: Number of ticks since last update.

7.2.6 WsfTimerNextExpiration()
Return the number of ticks until the next timer expiration.

Note: This function can return zero even if a timer is running, indicating the timer has expired but has
not yet been serviced.

Syntax:
wsTTimerTicks_t WsfTimerNextExpiration(bool_t *pTimerRunning)

Where:

e pTimerRunning: Returns TRUE if a timer is running, FALSE if no timers running.
This function returns the number of ticks until the next timer expiration.

7.2.7 WsfTimerServiceExpired()

Service expired timers for the given task.

Copyright © 2015, 2016 ARM. All rights reserved. Page 25

Confidential



Wireless Software Foundation API

This function is typically called only from WSF OS porting code.
Syntax:
wsfTimer_t *WsfTimerServiceExpired(wsfTaskId_t taskId)

Where:

e taskId: OS Task ID of task servicing timers.
This function returns a pointer to next expired timer or NULL if there are no expired timers.

Copyright © 2015, 2016 ARM. All rights reserved. Page 26

Confidential



Wireless Software Foundation API

8 Event Handlers

WSF event handlers receive WSF events, messages, and timer expirations from other components in
the software system. Event handlers are used by the main protocol subsystems of the stack.

The event handler interface is defined in file wsf_os.h.
8.1 Data Types
This section describe the event handler data types.

8.1.1 wsfMsgHdr_t
This is the common message structure passed to event handlers.

Table 5 Event handler message

Type Name Description

uintlé_t param General purpose parameter passed to event handler.
uint8_t event General purpose event value passed to event handler.
uint8_t status General purpose status value passed to event handler.

8.2 Functions
This section describe the event handler functions.

8.2.1 (*wsfEventHandler_t)()
This is the data type for event handler callback functions.

Syntax:
void (*wsfEventHandler_t) (wsfEventMask_t event, wsfMsgHdr_t *pMsg)
Where:

e event: Mask of events set for the event handler.
e pMsg: Pointer to message for the event handler.

8.2.2 WsfSetEvent()
Set an event to an event handler.

Syntax:
void WsfSetEvent(wsfHandlerId_t handlerId, wsfEventMask_t event)

Where:

e handlerId: Handler ID.
e event: Eventor events to set.

Copyright © 2015, 2016 ARM. All rights reserved. Page 27

Confidential



Wireless Software Foundation API

8.2.3 WsfOsSetNextHandler()
Set the next WSF handler function in the WSF OS handler array.

This function should only be called as part of the OS initialization procedure.
Syntax:
wsfHandTerId_t WsfOsSetNextHandler(wsfEventHandler_t handler)

Where:

e handler: WSF handler function.
This function returns the WSF handler ID for this handler.

Copyright © 2015, 2016 ARM. All rights reserved. Page 28

Confidential



Wireless Software Foundation API

9 Critical Sections

WSF provides critical section macros that are used in code which might be executed in interrupt
context to protect global data. The critical section interface is defined in file wsf_cs. h.

9.1 Macros
This section describe the macros.

9.1.1 WSF_CS_INIT()
Initialize critical section. This macro may define a variable.

Syntax:
WSF_CS_INIT(cs)
Where:
e cs: Critical section variable to be defined.

9.1.2 WSF_CS ENTER()
Enter a critical section.

Syntax:
WSF_CS_ENTER(cs)
Where:
e cs: Critical section variable.

9.1.3 WSF_CS_EXIT()
Exit a critical section.

Syntax:
WSF_CS_EXIT(cs)

Where:

e cs: Critical section variable.

Copyright © 2015, 2016 ARM. All rights reserved. Page 29

Confidential



Wireless Software Foundation API

10 Task Schedule Locking

WSF provides interfaces for locking and unlocking task scheduling. This allows for operation in pre-
emptive multi-tasking environments. The task schedule locking interface is defined in file wsf_os. h.

10.1 Functions
This section describe the task schedule functions.

10.1.1 WsfTaskLock()
Lock task scheduling.

Syntax:
void WsfTaskLock(void)

10.1.2 WsfTaskUnlock()
Unlock task scheduling.

Syntax:

void WsfTaskUnlock(void)

Copyright © 2015, 2016 ARM. All rights reserved. Page 30
Confidential



Wireless Software Foundation API

11 Assert

WSF defines assert macros that are used for testing and debugging purposes. The assert interface is
defined in file wsf_assert.h.

11.1 Macros
This section describe the assert macros.

11.1.1 WSF_ASSERT()
Run-time assert macro. The assert executes when the expression is FALSE.

Syntax:
WSF_ASSERT (expr)
Where:
e expr: Boolean expression to be tested.

11.1.2 WSF_CT_ASSERTY()

Compile-time assert macro. This macro causes a compiler error when the expression is FALSE. Note
that this macro is generally used at file scope to test constant expressions.

Errors may result if it is used in executing code.
Syntax:

WSF_CT_ASSERT (expr)
Where:

. expr: Boolean expression to be tested.

Copyright © 2015, 2016 ARM. All rights reserved. Page 31

Confidential



Wireless Software Foundation API

12 Trace

WSF defines trace macros that are used throughout the software system for diagnostic purposes. A
separate set of trace macros is used for each software subsystem (for example, WSF, HCI, DM, and
ATT). This allows trace messages to be compiled in/out for each subsystem. Within each set of
subsystem trace macros there are separate macros for different types of trace messages:

e INFO: Informational messages.

e WARN: Warning messages.

e ERR: Error messages.

e ALLOC: Memory or other resource is allocated.
e FREE: Memory or other resource is freed.

e MSG: WSF event handler message is sent.

Copyright © 2015, 2016 ARM. All rights reserved. Page 32
Confidential



Wireless Software Foundation API

13 Security

WSF provides interfaces to encryption and random number generation algorithms. These algorithms
are used by the stack to perform various Bluetooth LE security procedures.

13.1 Data Types
This section describe the security data types.

13.1.1 wsfSecMsg_t
Table 6 AES security callback parameters structure

Type Name Description
wsTMsgHdr_t hdr Message header.
uint8_t *pCiphertext Pointer to 16 bytes of ciphertext data.

13.1.2 wsfSecEccKey t
Table 7 ECC Security callback parameters structure

Type Name Description
uint8_t pubKey_x[WSF_ECC_KEY_LEN] Public key X.
uint8_t pubKey_y[WSF_ECC_KEY_LEN] Public key Y.
uint8_t privKey[WSF_ECC_KEY_LEN] Private key.

13.1.3 wsfSecEccSharedSec t
Table 8 ECC shared secret structure

Type Name Description

uint8_t secret[WSF_ECC_KEY_LEN] Shared secret.

13.1.4 wsfSecEccMsg_t
Table 9 ECC Security callback parameters structure

Type Name Description
wsfSecEccSharedSec_t sharedSecret Shared secret.
wsfSecEccKey_t key ECC key structure.

13.2 Functions

This section describe the security functions.

Copyright © 2015, 2016 ARM. All rights reserved. Page 33

Confidential



13.2.1 WsfSeclnit()
Initialize the security service.

This function should only be called once upon system initialization.

Syntax:
void WsfSecInit(void)

13.2.2 WsfSecRandInit()
Initialize the random number service.

This function should only be called once upon system initialization.

Syntax:
void WsfSecRandInit(void)

13.2.3 WsfSecAeslInit()
Initialize the AES service.

This function should only be called once upon system initialization.

Syntax:
void WsfSecAesInit (void)

13.2.4 WsfSecCmaclnit()
Called to initialize CMAC security.

This function should only be called once upon system initialization.

Syntax:
void WsfSecCmacInit (void)

13.2.5 WsfSecEcclnit()
Called to initialize ECC security.

This function should only be called once upon system initialization.

Syntax:
void WsfSecEccInit(void)

13.2.6 WsfSecAes()
Execute an AES calculation.

Wireless Software Foundation API

When the calculation completes, a WSF message will be sent to the specified handler.

Syntax:

uint8_t WsfSecAes(uint8_t *pKey, uint8_t *pPlaintext, wsfHandlerId_t handlerId,

uintl6_t param, uint8_t event)

Copyright © 2015, 2016 ARM. All rights reserved.

Confidential

Page 34



Wireless Software Foundation API

Where:

pKey: Pointer to 16 byte key.

pPlaintext: Pointer to 16 byte plaintext.
handlerId: WSF handler ID.

param: Client-defined parameter returned in message.
event: Event for client's WSF handler.

This function returns a token value that the client can use to match calls to this function with messages.

13.2.7 WsfSecCmac()
Execute the CMAC algorithm.

Syntax:

uint8_t WsfSecCmac(const uint8_t *pKey, uint8_t *pPlaintext, uint8_t textLen,
wsfHandlerId_t handlerId, uintl6_t param, uint8_t event)

Where:

pKeyKey: used in CMAC operation.

pPlaintext: Data to perform CMAC operation over
len: Size of pPlaintext in bytes.

handlerId: WSF handler ID for client.

param: Optional parameter sent to client's WSF handler.
event: Event for client's WSF handler.

This function returns TRUE if successful, FALSE otherwise.

13.2.8 WsfSecEccGenKey()
Generate an ECC key.

Syntax:
uint8_t WsfSecEccGenKey(wsfHandlerId_t handlerId, uintl6_t param, uint8_t event)

Where:

e handlerId: WSF handler ID for client.
e param: Optional parameter sent to client's WSF handler.
e event: Event for client's WSF handler.

This function returns TRUE if successful, FALSE otherwise.

13.2.9 WsfSecEccGenSharedSecret()
Generate an ECC shared secret from the input ECC keys.

Syntax:

uint8_t WsfSecEccGenSharedSecret(wsfSecEccKey_t *pKey, wsfHandlerId_t handlerId,
uintl6_t param, uint8_t event)

Where:
e pKey: ECC Key structure.

Copyright © 2015, 2016 ARM. All rights reserved. Page 35

Confidential



Wireless Software Foundation API

e handlerId: WSF handler ID for client.
e param: Optional parameter sent to client's WSF handler.
e event: Event for client's WSF handler.

This function returns TRUE if successful, FALSE otherwise.

13.2.10 WsfSecRand()
This function returns up to 16 bytes of random data to a buffer provided by the client.

Syntax:
void WsfSecRand(uint8_t *pRand, uint8_t randLen)

Where:

e pRand: Pointer to returned random data.
e randLen: Length of random data.

Copyright © 2015, 2016 ARM. All rights reserved. Page 36

Confidential



