ARM® Cordio Profiles

ARM-EPM-115884 1.0

Profile and Service API

Confidential

ARM

Copyright © 2011-2016 ARM. All rights reserved. Page 1

Confidential

Profile and Service API

ARM® Cordio Profile and Service API

Reference Guide
Copyright © 2011-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change

30 September 2015 } Confidential gérzstl Wicentric release for 1.1 as 2012-
1 March 2016 A Confidential First ARM release for 1.1

24 August 2016 A Confidential ,SAelrJVSi(I;’eESX # | Added new profiles and

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any
form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to
any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the
information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology
or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or
creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for
publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this
document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or
understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to
create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without
notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version
of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.
Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2011-2016, ARM Limited or its affiliates. All rights reserved.

Copyright © 2011-2016 ARM. All rights reserved. Page 2

Confidential

Profile and Service API

ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status

This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with
the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Copyright © 2011-2016 ARM. All rights reserved. Page 3

Confidential

Contents
ARM® Cordio Profiles

1 Preface

1.1 About this book
1.1.1 Using this book
1.1.2Intended audience
1.1.3Terms and abbreviations
1.1.4Conventions
1.1.5 Additional reading

1.2 Feedback

1.2.1 Feedback on content

2 Introduction

2.1 Overview

3 Service API
3.1 Functions
3.1.1 SvcAddGroup()
3.1.2 SvcRemoveGroup()

3.1.3 SvcCbackReqgister()

4 Service Example Walkthrough
4.1 Service Overview
4.2 Attribute Handles
4.3 Read and Write Permissions
4.4 Data Structures
4.4.1 Attribute Variables
4.4.2 Attribute Array

4.4.3 Group Structure

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

Profile and Service API

Page 4

10
10
10
10
10
12
12
12

12

13
13

14
15
15
15

15

16
16
16
16
17
17
18

19

5 Profile API

5.1

5.2

5.3

5.4

5.5

Alert Notification Profile Client
5.1.1 Handle Index Enumeration
5.1.2 AnpcAnsDiscover()

5.1.3 AnpcAnsControl()

5.1.4 AnpcAnsValueUpdate()
Battery Service Server
5.2.1basCfg_t

5.2.2Baslnit()

5.2.3 BasMeasBattStart()
5.2.4 BasMeasBattStop()
5.2.5BasProcMsg()

5.2.6 BasSendBattLevel()
5.2.7 BasReadCback()

Blood Pressure Profile Client
5.3.1Handle Index Enumeration
5.3.2BlpcBpsDiscover()
5.3.3BlpcBpsValueUpdate()
Blood Pressure Profile Sensor
5.4.1blpsCfg_t

5.4.2 Blpsinit()

5.4.3 BlpsMeasStart()

5.4.4 BlpsMeasStop()
5.4.5BlpsMeasComplete()
5.4.6 BlpsProcMsg()

5.4.7 BlpsSetBpmFlags()

5.4.8 BlpsSeticpFlags()

Device Information Service Client

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

Profile and Service API

Page 5

19
19
19
20
20
20
21
21
21
21
21
22
22
22
22
22
23
23
23
23
24
24
24
24
25
25
25
25

Profile and Service API

5.5.1 Handle Index Enumeration 25

5.5.2 DisDiscover() 26
5.5.3 DisValueUpdate() 26
5.6 Find Me Profile Locator 26
5.6.1 Handle Index Enumeration 26
5.6.2 FmpllasDiscover() 27
5.6.3 FmplSendAlert() 27
5.7 GAP Client 27
5.7.1Handle Index Enumeration 27
5.7.2 GapDiscover() 27
5.7.3 GapValueUpdate() 28
5.8 GATT Client 28
5.8.1Handle Index Enumeration 28
5.8.2 GattDiscover() 28
5.8.3 GattValueUpdate() 29
5.9 Glucose Profile Client 29
5.9.1 Handle Index Enumeration 29
5.9.2 glpcFilter_t 29
5.9.3 GlpcGlsDiscover() 30
5.9.4 GlpcGlsValueUpdate() 30
5.9.5GlpcGlsRacpSend() 30
5.9.6 GlpcGlsSetLastSegNum() 31
5.9.7 GlpcGlsGetLastSeqNum() 31
5.10 Glucose Profile Sensor 31
5.10.1 Glpslnit() 31
5.10.2 GlpsProcMsg() 31
5.10.3 GlpsRacpWriteCback() 31
5.10.4 GlpsSetFeature() 32

Copyright © 2011-2016 ARM. All rights reserved. Page 6

Confidential

5.11

5.12

5.13

5.14

5.15

5.10.5 GlpsSetCccldx()

HID Device Profile

5.11.1 HidSendInputReport()
5.11.2 HidSetProtocolMode()
5.11.3 HidGetProtocolMode()
5.11.4 HidGetControlPoint()
5.11.5 Hidlnit()

5.11.6 Callback Functions

Heart Rate Profile Client

5.12.1 Handle Index Enumeration
5.12.2 HrpcHrsDiscover()

5.12.3 HrpcHrsControl()

5.12.4 HrpcHrsValueUpdate()
Heart Rate Profile Sensor

5.13.1 hrpsCfg_t

5.13.2 Hrpsinit()

5.13.3 HrpsMeasStart()

5.13.4 HrpsMeasStop()

5.13.5 HrpsProcMsg()

5.13.6 HrpsWriteCback()

5.13.7 HrpsSetFlags()

Health Thermometer Profile Client
5.14.1 Handle Index Enumeration
5.14.2 HtpcHtsDiscover()

5.14.3 HtpcHtsValueUpdate()
Health Thermometer Profile Sensor
5.15.1 htpsCfg_t

5.15.2 Htpslinit()

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

Profile and Service API

Page 7

32
32
32
32
33
33
33
33
34
34
35
35
35
36
36
36
36
36
36
37
37
37
37
37
38
38
38
38

5.15.3 HtpsMeasStart()
5.15.4 HtpsMeasStop()
5.15.5 HtpsMeasComplete()
5.15.6 HtpsProcMsg()
5.15.7 HtpsSetTmFlags()
5.15.8 HtpsSetltFlags()

5.16 Phone Alert Status Profile Client
5.16.1 Handle Index Enumeration
5.16.2 PaspcPassDiscover()
5.16.3 PaspcPassControl()
5.16.4 PaspcPassValueUpdate()

5.17 Pulse Oximeter Profile Client
5.17.1 Handle Index Enumeration
5.17.2 PlIxpcPIxsDiscover()
5.17.3 PIxpcPIxsValueUpdate()
5.17.4 PlIxpcPIxsRacpSend()

5.18 Pulse Oximeter Profile Sensor
5.18.1 plxpsCfg_t
5.18.2 PIxpsInit()

5.18.3 PIxpsProcMsg()
5.18.4 PIxpsBtn()
5.18.5 PlIxpsWriteCback()
5.18.6 PIxpsSetFeature()
5.18.7 PlIxpsSetCccldx()
5.18.8 PlIxpsMeasStart()
5.18.9 PIxpsMeasStop()
5.19 Runners Speed and Cadence Profile Sensor

5.19.1 RscpsSetParameter()

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

Profile and Service API

Page 8

38
39
39
39
39
39
40
40
40
40
40
41
41
41
42
42
42
42
42
43
43
43
43
43
44
44
44

44

Profile and Service API

5.19.2 RscpsSetFeatures() 44

5.19.3 RscpsSendSpeedMeasurement() 45
5.20 Scan Parameter Profile Server 45
5.20.1 ScppsRegisterCback() 45
5.20.2 ScppsAttsWriteCback() 45
5.21 Time Profile Client 45
5.21.1 Handle Index Enumeration 45
5.21.2 TipcCtsDiscover() 45
5.21.3 TipcCtsValueUpdate() 46
5.22 Weight Scale Profile Client 46
5.22.1 WspcWssDiscover() 46
5.22.2 WspcWssValueUpdate() 46
5.23 Weight Scale Profile Sensor 47
5.23.1 WspsMeasComplete() 47
5.23.2 WspsSetWsmFlags() 47
5.24 Cordio Proprietary Profile Client 47
5.24.1 Handle Index Enumeration 47
5.24.2 WpcP1Discover() 47
Copyright © 2011-2016 ARM. All rights reserved. Page 9

Confidential

Profile and Service API

1 Preface
This preface introduces the Cordio Profile and Service APl Reference Manual.

1.1 About this book

This document describes the Cordio Profiles and Service API and lists the API functions and their
parameters.

1.1.1 Using this book
This book is organized into the following chapters:

e Introduction

Read this for an overview of the API for profiles and services.
e Service API

Read this for an overview of the modules in the service API.
e Service Example Walkthrough

Read this for an overview of a typical service.

e Profile API
Read this for a description of the Profile API types and functions.
e Revisions

Read this chapter for descriptions of the changes between document versions.

1.1.2 Intended audience

This book is written for experienced software engineers who might or might not have experience with
ARM products. Such engineers typically have experience of writing Bluetooth applications but might
have limited experience of the Cordio software stack.

It is also assumed that the readers have access to all necessary tools.

1.1.3 Terms and abbreviations
For a list of ARM terms, see the ARM glossary.

Terms specific to the Cordio software are listed below:

Term Description
ACL Asynchronous Connectionless data packet
AD Advertising Data
ARQ Automatic Repeat reQuest
ATT Attribute Protocol, also attribute protocol software subsystem
ATTC Attribute Protocol Client software subsystem
ATTS Attribute Protocol Server software subsystem
CCCorCCCD Client Characteristic Configuration Descriptor
CID Connection Identifier
CSRK Connection Signature Resolving Key
DM Device Manager software subsystem
Copyright © 2011-2016 ARM. All rights reserved. Page 10

Confidential

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

Profile and Service API

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

0o0B Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem

SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.
Copyright © 2011-2016 ARM. All rights reserved. Page 11

Confidential

1.1.4 Conventions

Profile and Service API

The following table describes the typographical conventions:

Style

Italic

bold

MONOSPACE

MONOSPACE

monospace italic

monospace bold

<and>

SMALL CAPITALS

1.1.5 Additional reading

Typographical conventions
Purpose

Introduces special terminology, denotes cross-references, and
citations.

Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

Denotes language keywords when used outside example code.

Encloses replaceable terms for assembler syntax where they
appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Used in body text for a few terms that have specific technical
meanings, that are defined in the ARM® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,
and UNPREDICTABLE.

This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

¢ Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

1.2.1 Feedback on content

If you have comments on content then send an e-mail to errata@arm. com. Give:

Copyright © 2011-2016 ARM. All rights reserved. Page 12

Confidential

http://infocenter.arm.com/

Profile and Service API

The title.

The number, ARM-EPM-115152.

The page numbers to which your comments apply.
A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.

2 Introduction

This document describes the API for profiles and services. The profiles and services are interoperable
components that are designed to Bluetooth profile and service specification requirements. The profiles
and services are used in applications to implement particular profile and service features.

2.1 Overview

The profiles are implemented in separate files for each profile role. The services may be grouped
together in files based on their logical function and the profile they are used by.

The following standard services are supported:

e Battery Service (BAS)

e Blood Pressure Service (BPS)

e Cycling Power Service (CPS)

e Cycling Speed and Cadence Service (CSCS)
e Device Information Service (DIS)

e Glucose Service (GLS)

e Heart Rate Service (HRS)

e Health Thermometer Service (HTS)

e HID Service (HIDS)

e Immediate Alert Service (1AS)

e Internet Profiles Support Service (IPSS)

e Link Loss Service (LLS)

e Pulse Oximeter Service (PLXS)

e Runner’s Speed and Cadence Service (RSCS)
e Scan Parameters Service (SCPS)

e TX Power Service (TPS)

e Weight Scale Service (WSS)

The following standard profiles are supported:

e Alert Notification Profile (ANP)
e Blood Pressure Profile (BLP)

Copyright © 2011-2016 ARM. All rights reserved. Page 13

Confidential

Profile and Service API

e Cycling Power Profile (CPP)

e Cycling Speed and Cadence Profile (CSCP)
e Find Me Profile (FMP)

e Glucose Profile (GLP)

e Heart Rate Profile (HRP)

e Health Thermometer Profile (HTP)

e HID Over GATT Profile (HOGP)

e Phone Alert Status Profile (PASP)

e Proximity Profile (PXP)

e Pulse Oximeter Profile (PLXP)

e Runner’s Speed and Cadence Profile (RSCP)
e Time Profile (TIP)

e Weight Scale Profile (WSP)

3 Service API

Services are divided into separate modules as follows:

Table 1 Service modules

Service Interface file
Battery Service svc_batt.h
Blood Pressure Service svc_bps.h
Cordio Proprietary Service svc_wp.h
Cycling Power Service svc_cps.h
Cycling Speed and Cadence Service svc_cscs.h
Device Information Service svc_dis.h
GAP Service svc_core.h

GATT Service

Glucose Service svc_gls.h
Gyro Proprietary Service svc_gyro.h
Heart Rate Service svc_hrs.h
Health Thermometer Service svc_hts.h
HID Service svc_hid.h
Generic svc_hidg.c
Keyboard svc_hidkb.c
Mouse svc_hidm.c
Immediate Alert Service svc_px.h

Link Loss Service

TX Power Service

Internet Protocol Support Service svc_ipss.h

Copyright © 2011-2016 ARM. All rights reserved. Page 14

Confidential

Profile and Service API

Pulse Oximeter Service svc_plxs.h
Runner’s Speed and Cadence Service svc_rscs.h
Scan Parameters Service svc_scpss.h
Temperature Proprietary Service svc_temp.h
Weight Scale Service svc_wss.h

3.1 Functions

All service modules have equivalent API functions to add, remove, and configure the callbacks for a
service. The generalized functions described in this section are applicable to all service modules.

Note that these generalized API functions are for illustration purposes only and not actually
implemented in the code. The actual API functions for a service module are given in its interface file.

3.1.1 SvcAddGroup()
Add the attribute group for the service to the attribute database.

Syntax:
void SvcAddGroup(void)
This function is typically called once at system startup to set up and initialize a service.

3.1.2 SvcRemoveGroup()
Remove the attribute group for the service from the attribute database.

Syntax:

void SvcRemoveGroup(void)

The service will no longer be available to peer devices.

3.1.3 SvcCbackRegister()
Register the attribute read and write attribute callback functions for a service. These callback functions
will be executed an attribute configured to use callbacks in its settings is accessed by a peer device.

If a callback is not used it can be set to NULL.
Syntax:

void SvcCbackRegister(attsReadCback_t readCback, attsWriteCback_t writeCback)
Where:

e readCback: Read callback. See the Cordio Attribute Protocol APl Reference Manual.
e writeCback: Write callback. See the Cordio Attribute Protocol APl Reference Manual.

Copyright © 2011-2016 ARM. All rights reserved. Page 15

Confidential

Profile and Service API

4 Service Example Walkthrough

The best way to understand a service is by walking through an example. This walkthrough uses the
battery service in files svc_batt.h and svc_batt.c.

4.1 Service Overview

The battery service is a simple service with only a few attributes. A diagram of the attributes in the
battery service is shown in Figure 1.

Battery Service

Service Declaration

Battery Level
Characteristic

Battery Level

Battery Level CCCD

Figure 1. Battery service attributes.

The battery service contains four attributes: The service declaration, battery level characteristic
declaration, the battery level, and the battery level client characteristic configuration descriptor
(CCCD).

4.2 Attribute Handles

The attribute handles for the service are defined in svc_batt.h. Macro BATT_START_HDL defines
the start value for the handle range used by the service. The start handle must be set so it does not
overlap with the handles of any other service used by an application. The enumeration that follows
defines the handle value for each attribute.

/* Battery Service */
#define BATT START HDL 0x60
#define BATT END HDL (BATT MAX HDL - 1)

/* Battery Service Handles */

enum
{
BATT SVC HDL = BATT START HDL, /* Battery service declaration */
BATT LVL CH HDL, /* Battery level characteristic */
BATT LVL HDL, /* Battery level */
BATT LVL CH CCC HDL, /* Battery level CCCD */

BATT MAX HDL
}i

4.3 Read and Write Permissions

Two macros are provided to simplify the configuration of read and write security permissions for the
attributes of the service. The security permissions control whether encryption is required before an
attribute can be read or written. The macros are in svc_batt.c.

Copyright © 2011-2016 ARM. All rights reserved. Page 16

Confidential

Profile and Service API

/*! Characteristic read permissions */

#ifndef BATT SEC_PERMIT READ

#define BATT SEC_ PERMIT READ SVC SEC PERMIT READ
fendif

/*! Characteristic write permissions */

#ifndef BATT SEC_PERMIT WRITE

#define BATT SEC_PERMIT WRITE SVC_ SEC PERMIT WRITE
fendif

By default, the read and write permissions for the service are set to the global read and write settings in
svc_cfg.h.

4.4 Data Structures

A service implementation consists of ATT protocol layer data structures containing attribute data. The
data structures are related as shown in Figure 2.

Group
Structure

Attribute

Attribute Structure

Figure 2. Service data structures.

The group structure contains a pointer to an attribute array and the handle range of the attributes it
references. The attribute array is an array of structures with each structure containing a UUID, data,
length, and other information for the attribute.

4.4.1 Attribute Variables
Variables containing the value and length of each attribute are defined in svc_batt.c.

/* Battery service declaration */
static const uint8 t battvalSvc[] = {UINT16 TO BYTES (ATT UUID BATTERY SERVICE)};
static const uintl6é t battLenSvc = sizeof (battValsvc);

/* Battery level characteristic */

static const uint8 t battValLvlCh[] = {ATT PROP READ | ATT PROP NOTIFY,
UINT16 TO BYTES (BATT LVL HDL), UINT16 TO BYTES (ATT UUID BATTERY LEVEL)};

static const uintl6é t battLenLvlCh = sizeof (battValLvlCh);

/* Battery level */
static uint8 t battValLvl[] = {0};
static const uintlé_t battLenLvl = sizeof (battVallLvl);

/* Battery level client characteristic configuration */

Copyright © 2011-2016 ARM. All rights reserved. Page 17

Confidential

Profile and Service API
static uint8 t battValLvlChCcc[] = {UINT1l6_TO BYTES (0x0000)};
static const uintl6 t battLenLvlChCcc = sizeof (battValLvlChCcc);
The value of the battery service declaration is the UUID for the battery service.

The value of the battery level characteristic declaration is a byte array with contents defined by the
Bluetooth specification. It contains the properties, handle, and UUID of the battery level. The
properties are configured to allow read and notification, as defined by the battery service specification.

The battery level value is a single byte as defined by the battery service specification.
The battery level CCCD is a 16-bit integer formatted as a little-endian byte array.

Note that the variables that cannot be changed are defined as const (to save RAM), while variables
that can be changed, like the battery level and CCCD, are not const.

4.4.2 Attribute Array
The attribute variables defined above are used to construct an attribute structure for each attribute.
These structures are contained in an array of type attsAttr_t.

typedef struct
{

uint8 t const *pUuid; /*! Pointer to the attribute’s UUID */

uint8 t *pValue; /*! Pointer to the attribute’s value */

uintleé t *plen; /*! Pointer to the length of the
attribute’s value */

uintl6 t maxLen; /*! Maximum length of attribute’s value */

uint8 t settings; /*! Attribute settings */

uint8 t permissions; /*! Attribute permissions */

} attsAttr t;
The attribute array for battery service is shown below.

static const attsAttr t battList[] =
{
/* Service declaration */
{
attPrimSvcUuid,
(uint8 t *) battValsvc,
(uintl6_t *) &battLenSvc,
sizeof (battvalSve),
0,
ATTS PERMIT READ
by
/* Characteristic declaration */
{
attChUuid,
(uint8 t *) battValLvlCh,
(uintl6_t *) &battLenLvlCh,
sizeof (battvalLv1Ch),
0,
ATTS PERMIT READ
by
/* Characteristic value */
{
attBlChUuid,
battvallLvl,
(uintl6_t *) &battLenLvl,
sizeof (battvallLvl),
ATTS SET READ CBACK,

Copyright © 2011-2016 ARM. All rights reserved. Page 18

Confidential

}i

Profile and Service API

BATT SEC_PERMIT READ
b
/* Characteristic CCC descriptor */
{

attCliChCfgUuid,

battvalLvlChCcc,

(uintl6_t *) &battLenLvlChCcc,

sizeof (battValLv1lChCcc),

ATTS SET CCC,

(ATTS PERMIT READ | BATT SEC PERMIT WRITE)
}

Note the following:

443

The attribute permissions for the service declaration and the characteristic declaration are set to
read-only and not overridden by the permissions macros. The Bluetooth specification requires
that these types of attributes are always readable.

The battery level characteristic value is set to use a read callback (ATTS_SET_READ_CBACK).
When the battery level is read by a peer device it will execute a callback defined by the
application. This callback must return the value of the battery level.

The characteristic CCC descriptor has setting ATTS_SET_CCC. This identifies itasa CCC
descriptor to the ATT protocol layer.

Group Structure

The group structure contains the attribute array and the handle start and end range for the service.

/* Battery group structure */
static attsGroup t svcBattGroup =

{

}s

NULL,
(attsAttr t *) battList,
NULL,

NULL,

BATT START HDL,

BATT END HDL

5 Profile API

This section describes the types and functions that are in the profile API.

5.1 Alert Notification Profile Client

5.1.1

Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic

discovery.
Table 2 Alert notification profile handle index enumeration
Name Description
ANPC_ANS_SNAC_HDL_IDX Supported new alert category.
ANPC_ANS_NA_HDL_IDX New alert.
Copyright © 2011-2016 ARM. All rights reserved. Page 19

Confidential

Profile and Service API

ANPC_ANS_NA_CCC_HDL_IDX New alert CCC descriptor.
ANPC_ANS_SUAC_HDL_IDX Supported unread alert category.
ANPC_ANS_UAS_HDL_IDX Unread alert status.

ANPC_ANS_UAS_CCC_HDL_IDX Unread alert status CCC descriptor.

ANPC_ANS_ANCP_HDL_IDX Alert notification control point.

ANPC_ANS_HDL_LIST_LEN Handle list length.

5.1.2 AnpcAnsDiscover()
Perform service and characteristic discovery for Alert Notification service.

Syntax:
void AnpcAnsDiscover(dmConnId_t connId, uintl6_t *pHdIList)

Where:

e connId: Connection identifier. See Cordio Device Manager APl Reference Manual.
e pHdT1List: Characteristic handle list.

Parameter pHdIList must point to an array of length ANPC_ANS_HDL_LIST_LEN. If discovery is
successful the handles of discovered characteristics and descriptors will be set in pHdIList.

5.1.3 AnpcAnsControl()
Send a command to the alert notification control point.

Syntax:

void AnpcAnsControl(dmConnId_t connId, uintl6_t handle, uint8_t command, uint8_t
catld)

Where:

e connId: Connection identifier.

e handle: Attribute handle.

e command: Control point command.
e catlId: Alert category ID.

5.1.4 AnpcAnsValueUpdate()
Process a value received in an ATT read response, notification, or indication message.

Syntax:
uint8_t AnpcAnsValueUpdate(uintl6_t *pHdlList, attEvt_t *pMsg)

Where:

e pHd1List: Characteristic handle list.
e pMsg: ATT callback message.

Copyright © 2011-2016 ARM. All rights reserved. Page 20

Confidential

Profile and Service API

Parameter pHdIList must point to an array of length ANPC_ANS_HDL_LIST_LEN. If the ATT handle of
the message matches a handle in the handle list the value is processed, otherwise it is ignored.

Returns ATT_SUCCESS if handle is found, ATT_ERR_NOT_FOUND otherwise.
5.2 Battery Service Server

5.2.1 basCfg_t
Battery server configurable parameters.

Table 3 Batter service parameters

Type Name Description

wsfTimerTicks_t period Battery measurement timer expiration period in seconds.
uintlé_t count Perform battery measurement after this many timer periods.
uint8_t threshold Send battery level notification to peer when below this level.

5.2.2 Baslnit()
Initialize the battery service server.

Syntax:
void BasInit(wsfHandlerId_t handlerId, basCfg_t *pCfg)

Where:

e handerId: WSF handler ID of the application using this service.
e pCfg: Battery service configurable parameters.

5.2.3 BasMeasBattStart()
Start periodic battery level measurement.

This function starts a timer to perform periodic battery measurements.
Syntax:

void BasMeasBattStart(dmConnId_t connId, uint8_t timerEvt, uint8_t battCccldx)
Where:

e connId: DM connection identifier.
e timerEvt: WSF event designated by the application for the timer.
e battCccIdx: Index of battery level CCC descriptor in CCC descriptor handle table.

5.2.4 BasMeasBattStop()
Stop periodic battery level measurement.

Syntax:

void BasMeasBattStop(void)

Copyright © 2011-2016 ARM. All rights reserved. Page 21

Confidential

Profile and Service API

5.2.5 BasProcMsg()
This function is called by the application when the battery periodic measurement timer expires.

Syntax:
void BasProcMsg(wsfMsgHdr_t *pMsg)

Where:
e pMsg: Event message.

5.2.6 BasSendBattLevel()
Send the battery level to the peer device.

Syntax:
void BasSendBattLevel(dmConnId_t connId, uint8_t battCccIldx, uint8_t level)

Where:

e connId: DM connection identifier.
e battCccIdx: Index of battery level CCC descriptor in CCC descriptor handle table.
e Tevel: The battery level.

5.2.7 BasReadCback()
ATTS read callback for battery service used to read the battery level.

Syntax:

uint8_t BasReadCback(dmConnId_t connId, uintl6_t handle, uint8_t operation,
uintl6e_t offset, attsAttr_t *pAttr)

Where:

e connId: DM connection identifier.

e handle: Attribute handle.

e operation: ATT operation.

e offset: Attribute read/write offset.
e pAttr: Pointer to attribute structure.

Use this function as a parameter to SvcBattCbhackRegister().

5.3 Blood Pressure Profile Client

5.3.1 Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic
discovery.

Copyright © 2011-2016 ARM. All rights reserved. Page 22

Confidential

Profile and Service API

Table 4 Blood pressure profile handle index enumeration

Name Description

BLPC_BPS_BPM_HDL_IDX Blood pressure measurement.

BLPC_BPS_BPM_CCC_HDL_IDX Blood pressure measurement CCC descriptor.

BLPC_BPS_ICP_HDL_IDX Intermediate cuff pressure.

BLPC_BPS_ICP_CCC_HDL_IDX Intermediate cuff pressure CCC descriptor.

BLPC_BPS_BPF_HDL_IDX Blood pressure feature.

BLPC_BPS_HDL_LIST_LEN Handle list length.

5.3.2 BlpcBpsDiscover()
Perform service and characteristic discovery for Blood Pressure service.

Syntax:
void B1pcBpsDiscover(dmConnId_t connId, uintl6_t *pHdIList)
Where:

e connld: Connection identifier.
e pHd1List: Characteristic handle list.

Parameter pHd1L1ist must point to an array of length BLPC_BPS_HDL_LIST_LEN. If discovery is
successful the handles of discovered characteristics and descriptors will be set in pHd1List.

5.3.3 BlpcBpsValueUpdate()
Process a value received in an ATT read response, notification, or indication message.

Syntax:
uint8_t BlpcBpsValueUpdate(uintl6_t *pHdlList, attEvt_t *pMsg)

Where:

e connlId: Connection identifier.
e pMsg: ATT callback message.

Parameter pHd1L1ist must point to an array of length BLPC_BPS_HDL_LIST_LEN. If the ATT handle of
the message matches a handle in the handle list the value is processed, otherwise it is ignored.

Returns ATT_SUCCESS if handle is found, ATT_ERR_NOT_FOUND otherwise.
5.4 Blood Pressure Profile Sensor

5.4.1 blpsCfg_t
Blood pressure sensor configurable parameters.

Copyright © 2011-2016 ARM. All rights reserved. Page 23

Confidential

Profile and Service API

Table 5 Blood pressure profile parameters

Type Name Description

wsfTimerTicks_t period Measurement timer expiration period in ms.

5.4.2 Blpslnit()
Initialize the Blood Pressure profile sensor.

Syntax:
void BlpsInit(wsfHandlerId_t handlerId, blpsCfg_t *pCfg)

Where:

e handerId: WSF handler ID of the application using this service.
e pCfg: Configurable parameters.

5.4.3 BlpsMeasStart()

Start periodic blood pressure measurement. This function starts a timer to perform periodic
measurements.

Syntax:
void BlpsMeasStart(dmConnId_t connId, uint8_t timerEvt, uint8_t icpCccldx)

Where:

e connId: DM connection identifier.

e timerEvt: WSF event designated by the application for the timer.

e icpCccIdx: Index of intermediate cuff pressure CCC descriptor in CCC descriptor handle
table.

5.4.4 BlpsMeasStop()
Stop periodic blood pressure measurement.

Syntax:
void BlpsMeasStop(void)

5.4.5 BlpsMeasComplete()
Blood pressure measurement complete.

Syntax:
void BlpsMeasComplete(dmConnId_t connId, uint8_t bpmCccIdx)
Where:

e connId: DM connection identifier.

Copyright © 2011-2016 ARM. All rights reserved. Page 24

Confidential

Profile and Service API

e bpmCccIdx: Index of blood pressure measurement CCC descriptor in CCC descriptor handle

table.

5.4.6 BlpsProcMsg()

This function is called by the application when the periodic measurement timer expires.

Syntax:

void BlpsProcMsg(wsfMsgHdr_t *pMsg)
Where:

e pMsg: Event message.

5.4.7 BlpsSetBpmFlags()
Set the blood pressure measurement flags.

Syntax:
void BlpsSetBpmFlags(uint8_t flags)

Where:

e flags: Blood pressure measurement flags.

5.4.8 BlpsSeticpFlags()
Set the intermediate cuff pressure flags.

Syntax:
void BlpsSetIcpFlags(uint8_t flags)

Where:

e flags: Intermediate cuff pressure flags.

5.5 Device Information Service Client

5.5.1 Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic

discovery.

Table 6 Device information handle index enumeration

Name

Description

DIS_MFNS_HDL_IDX

Manufacturer name string.

DIS_MNS_HDL_IDX

Model number string.

DIS_SNS_HDL_IDX

Serial number string.

DIS_HRS_HDL_IDX

Hardware revision string.

DIS_FRS_HDL_IDX

Firmware revision string.

Copyright © 2011-2016 ARM. All rights reserved.

Page 25

Confidential

Profile and Service API

DIS_SRS_HDL_IDX Software revision string
DIS_SID_HDL_IDX System ID.
DIS_HDL_LIST_LEN Handle list length.

5.5.2 DisDiscover()
Perform service and characteristic discovery for DIS service.

Syntax:
void DisDiscover(dmConnId_t connId, uintl6_t *pHdlList)
Where:

e connld: Connection identifier.
e pHdT1List: Characteristic handle list.

Note that pHd1L1ist must point to an array of handles of length DIS_HDL_LIST_LEN. If discovery is
successful the handles of discovered characteristics and descriptors will be set in pHdT1List.

5.5.3 DisValueUpdate()
Process a value received in an ATT read response, notification, or indication message.

Syntax:
uint8_t DisValueUpdate(uintl6_t *pHdlList, attEvt_t *pMsg)
Where:

e pHdIList: Characteristic handle list.
e pMsg: ATT callback message.

Parameter pHd1L1ist must point to an array of length DIS_HDL_LIST_LEN. If the attribute handle of the
message matches a handle in the handle list the value is processed, otherwise it is ignored.

Returns ATT_SUCCESS if handle is found, ATT_ERR_NOT_FOUND otherwise.
5.6 Find Me Profile Locator

5.6.1 Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic
discovery.

Table 7 Find Me profile handle index enumeration

Name Description
FMPL_TAS_AL_HDL_IDX Alert level
FMPL_TAS_HDL_LIST_LEN Handle list length.
Copyright © 2011-2016 ARM. All rights reserved. Page 26

Confidential

Profile and Service API

5.6.2 FmpllasDiscover()
Perform service and characteristic discovery for Immediate Alert service.

Syntax:
void FmplIasDiscover(dmConnId_t connld, uintl6_t *pHdIList)

Where:

e connId: Connection identifier.
e pHd1List: Characteristic handle list.

Note that pHd1L1ist must point to an array of handles of length FMPL_TAS_HDL_LIST_LEN.

If discovery is successful the handles of discovered characteristics and descriptors will be set in
pHdTList.

5.6.3 FmplSendAlert()
Send an immediate alert to the peer device.

Syntax:
void FmplSendAlert(dmConnId_t connId, uintl6_t handle, uint8_t aler)

Where:

e connId: DM connection ID.
e handle: Attribute handle.
e alert: Alert value.

5.7 GAP Client

5.7.1 Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic
discovery.

Table 8 GAP handle index enumeration

Name Description
GAP_CAR_HDL_IDX Central address resolution.
GAP_HDL_LIST_LEN Handle list length.

5.7.2 GapDiscover()
Perform service and characteristic discovery for GAP service.

Syntax:
void GapDiscover(dmConnId_t connId, uintl6_t *pHdlList)

Where:

Copyright © 2011-2016 ARM. All rights reserved. Page 27

Confidential

Profile and Service API

e connlId: Connection identifier.
e pHd1List: Characteristic handle list.

Note that pHd1L1ist must point to an array of handles of length GAP_HDL_LIST_LEN.

If discovery is successful the handles of discovered characteristics and descriptors will be set in
pHdTList.

5.7.3 GapValueUpdate()
Process a value received in an ATT read response, notification, or indication message.

Syntax:
uint8_t GapValueUpdate(uintl6_t *pHdlList, attEvt_t *pMsg)
Where:

e pHd1List: Characteristic handle list.
e pMsg: ATT callback message.

Parameter pHdIList must point to an array of length GATT_HDL_LIST_LEN. If the attribute handle of the
message matches a handle in the handle list the value is processed, otherwise it is ignored.

Returns ATT_SUCCESS if handle is found, ATT_ERR_NOT_FOUND otherwise.

5.8 GATT Client

5.8.1 Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic
discovery.

Table 9 GATT handle index enumeration

Name Description

GATT_SC_HDL_IDX Service changed.

GATT_SC_CCC_HDL_IDX Service changed client characteristic configuration descriptor.
GATT_HDL_LIST_LEN Handle list length.

5.8.2 GattDiscover()
Perform service and characteristic discovery for GATT service.

Syntax:
void GattDiscover(dmConnId_t connId, uintl6_t *pHdlList)

Where:

e connlId: Connection identifier.

Copyright © 2011-2016 ARM. All rights reserved. Page 28

Confidential

Profile and Service API

e pHdT1List: Characteristic handle list.
Note that pHd1L1ist must point to an array of handles of length GATT_HDL_LIST_LEN.

If discovery is successful the handles of discovered characteristics and descriptors will be set in
pHdTList.

5.8.3 GattValueUpdate()
Process a value received in an ATT read response, notification, or indication message.

Syntax:
uint8_t GattValueUpdate(uintl6é_t *pHdlList, attEvt_t *pMsg)

Where:

e pHd1List: Characteristic handle list.
e pMsg: ATT callback message.

Parameter pHdIList must point to an array of length GATT_HDL_LIST_LEN. If the attribute handle of the
message matches a handle in the handle list the value is processed, otherwise it is ignored.

Returns ATT_SUCCESS if handle is found, ATT_ERR_NOT_FOUND otherwise.
5.9 Glucose Profile Client

5.9.1 Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic
discovery.

Table 10 Glusose profile handle index enumeration

Name Description

GLPC_GLS_GLM_HDL_IDX Glucose measurement.

GLPC_GLS_GLM_CCC_HDL_IDX Glucose measurement CCC descriptor.

GLPC_GLS_GLMC_HDL_IDX Glucose measurement context.

GLPC_GLS_GLMC_CCC_HDL_IDX Glucose measurement context CCC descriptor.

GLPC_GLS_GLF_HDL_IDX Glucose feature.

GLPC_GLS_RACP_HDL_IDX Record access control point.

GLPC_GLS_RACP_CCC_HDL_IDX Record access control point CCC descriptor.

GLPC_GLS_HDL_LIST_LEN Handle list length.

5.9.2 glpcFilter_t
Glucose service RACP filter type.

Copyright © 2011-2016 ARM. All rights reserved. Page 29

Confidential

Profile and Service API

Table 11 Glusose service filter type

Type Name Description
uintlé_t seqNum Sequence number filter.
uint8_t type Filter type.

5.9.3 GlpcGlsDiscover()
Perform service and characteristic discovery for Glucose service.

Syntax:
void GlpcGlsDiscover(dmConnId_t connld, uintl6_t *pHdIList)

Where:

e connId: Connection identifier.
e pHdT1List: Characteristic handle list.

Parameter pHd1L1ist must point to an array of length GLPC_GLS_HDL_LIST_LEN. If discovery is
successful the handles of discovered characteristics and descriptors will be set in pHdT1List.

5.9.4 GlpcGlsValueUpdate()
Process a value received in an ATT read response, notification, or indication message.

Syntax:
uint8_t GlpcGlsValueUpdate(uintl6_t *pHdIList, attEvt_t *pMsg)
Where:

e pHdT1List: Characteristic handle list.
e pMsg: ATT callback message.

Parameter pHd1L1ist must point to an array of length GLPC_GLS_HDL_LIST_LEN. If the ATT handle of
the message matches a handle in the handle list the value is processed, otherwise it is ignored.

Return ATT_SUCCESS if handle is found, ATT_ERR_NOT_FOUND otherwise.

5.9.5 GlpcGlsRacpSend()
Send a command to the glucose service record access control point.

Syntax:

void GlpcGlsRacpSend(dmConnId_t connlId, uintl6_t handle, uint8_t opcode, uint8_t
oper, glpcFilter_t *pFilter)

Where:

e connId: Connection identifier.

e handle: Attribute handle.

e opcode: Command opcode.

e oper: Command operator or O if no operator required.

Copyright © 2011-2016 ARM. All rights reserved. Page 30
Confidential

e pFliter: Command filter parameters or NULL of no parameters required.

5.9.6 GlpcGlsSetLastSegNum()
Set the last received glucose measurement sequence number.

Syntax:

vovoid GlpcGlsSetLastSeqNum(uintl6e_t segNumid)
Where:

e segNum: Glucose measurement sequence number.

5.9.7 GlpcGlsGetLastSegNum()
Return the last received glucose measurement sequence number.

Syntax:
uintle_t GlpcGlsGetlLastSeqNum(void)
5.10Glucose Profile Sensor

5.10.1 Glpslnit()
Initialize the Glucose profile sensor.

Syntax:
void GlpsInit(void)

5.10.2 GlpsProcMsg()

Profile and Service API

This function is called by the application when a message that requires processing by the glucose

profile sensor is received.
Syntax:

void GlpsProcMsg(wsfMsgHdr_t *pMsg)
Where:

e pMsg: Event message.

5.10.3 GlpsRacpWriteCback()
ATTS write callback for glucose service record access control point.

Syntax:

uint8_t GlpsRacpWriteCback(dmConnId_t connld, uintl6_t handle, uint8_t
operation, uintl6_t offset, uintl6e_t len, uint8_t *pValue, attsAttr_t

*pAttr)
Where:

e TBD
Use this function as a parameter to SvcGlsCbhackRegister().

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

Page 31

Profile and Service API

5.10.4 GlpsSetFeature()
Set the supported features of the glucose sensor.

Syntax:
void GlpsSetFeature(uintl6_t feature)

Where:
e feature: Feature bitmask.

5.10.5 GlpsSetCccldx()
Set the CCCD index used by the application for glucose service characteristics.

Syntax:
void GlpsSetCccIdx(uint8_t gImCccIdx, uint8_t glmcCccIdx, uint8_t racpCccldx)

Where:

e gImCccIdx: Glucose measurement CCCD index.
e glmcCccIdx: Glucose measurement context CCCD index.
e racpCccIdx: Record access control point CCCD index.

5.11HID Device Profile

The HID, Human Interface Device, Profile provides functions to support HID Devices such as
Keyboards, Computer Mice, and Remote Controls.

5.11.1 HidSendInputReport()
The HidSendInputReport () function is used to send a HID input report to the host.

Syntax:

void HidSendInputReport(dmConnId_t connId, uint8_t reportld, uintl6e_t Ten,
uint8_t *pValue)

Where:

e connId: Connection identifier.

e reportId: The identifier of the report

e len: The length of pValue in bytes

e pValue: The contents of the report to be sent to the host

Note: The reportId value must correspond to one of the entries in the hidReportIdMap_t map
defined in the HID application.

5.11.2 HidSetProtocolMode()
The HidSetProtocolMode () function is used to set the Protocol Mode to Report or Boot Mode.

Syntax:

void HidSetProtocolMode(uint8_t protocolMode)

Copyright © 2011-2016 ARM. All rights reserved. Page 32

Confidential

Profile and Service API

Where:

e protocolMode: The protocol mode (HID_PROTOCOL_MODE_REPORT or
HID_PROTOCOL_MODE_BOOT).

Note: The protocol mode is only used in devices that support HID boot keyboard and/or boot mouse.
This function is generally called once on connection establishment to restore the protocol mode to the
default value.

5.11.3 HidGetProtocolMode()
The HidGetProtocolMode () function is used to get the value of the Protocol Mode.

Syntax:
uint8_t HidGetProtocolMode (void)

Protocol mode is only used in devices that support HID boot keyboard and/or boot mouse. The Host
may alter the protocol mode at any time. Applications supporting Protocol Mode may check the
protocol mode before sending input reports to the Host to determine the proper format of the report.

5.11.4 HidGetControlPoint()

The HidGetControlPoint () function is used to get the value of the Control Point. The control point
indicates if the Host is operational or in suspended mode.

Syntax:

uint8_t HidGetControlPoint(void)

5.11.5 Hidlnit()
The HidInit () function is used to initialize the HID profile.

Syntax:
void HidInit(const hidConfig_t *pConfig)

Where:

e pConfig: The HID Configuration structure. For more information about the HID
Configuration structure, see the Cordio Sample App Users Guide.

5.11.6 Callback Functions

5.11.6.1 (*hidOutputReportCback_t)()

The hidOutputReportCback_t callback is called to notify the application of receipt of a HID output
report from the Host.

Syntax:

typedef void (*hidOutputReportCback_t) (dmConnId_t connId, uint8_t id, uintl6_t
Ten, uint8_t *pReport)

Where:

Copyright © 2011-2016 ARM. All rights reserved. Page 33

Confidential

Profile and Service API

e connId: Connection identifier.

e id: The report ID

e Ten: The length of the pReport in bytes.
e pReport: The output report data

Note: The id value will correspond to one of the entries in the hidReportIdMap_t map defined in the
HID application.

5.11.6.2 (*hidFeatureReportCback_t)()
The hidFeatureReportCback_t callback is called to notify the application of receipt of a HID feature
report from the Host.

Syntax:

typedef void (*hidFeatureReportCback_t) (dmConnId_t connId, uint8_t 1id, uintl6_t
Ten, uint8_t *pReport)

Where:

e connId: Connection identifier.

e id: Thereport ID

e Ten: The length of the pReport in bytes.
e pReport: The feature report data

Note: The id value will correspond to one of the entries in the hidReportIdMap_t map defined in the
HID application.

5.11.6.3 (*hidInfoCback_t)()
The hidInfoCback_t callback is called to notify the application of a change in protocol mode or
control point by the host.

Syntax:
typedef void (*hidInfoCback_t) (dmConnId_t connId, uint8_t type, uint8_t value)
Where:

e connId: Connection identifier.
e type: The type of information
e value: The information.

5.12Heart Rate Profile Client

5.12.1 Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic
discovery.

Copyright © 2011-2016 ARM. All rights reserved. Page 34

Confidential

Profile and Service API

Table 12 Heart rate profile handle index enumeration

Name Description

HRPC_HRS_HRM_HDL_IDX Heart rate measurement.

HRPC_HRS_HRM_CCC_HDL_IDX Heart rate measurement CCC descriptor.

HRPC_HRS_BSL_HDL_IDX Body sensor location.
HRPC_HRS_HRCP_HDL_IDX Heart rate control point.
HRPC_HRS_HDL_LIST_LEN Handle list length.

5.12.2 HrpcHrsDiscover()
Perform service and characteristic discovery for Heart Rate service.

Syntax:
void HrpcHrsDiscover(dmConnId_t connlId, uintl6_t *pHdIList)

Where:

e connId: Connection identifier.
e pHdT1List: Characteristic handle list.

Parameter pHd1L1ist must point to an array of length HRPC_HRS_HDL_LIST_LEN. If discovery is
successful the handles of discovered characteristics and descriptors will be set in pHdT1List.

5.12.3 HrpcHrsControl()
Send a command to the heart rate control point.

Syntax:
void HrpcHrsControl(dmConnId_t connId, uintl6_t handle, uint8_t command)
Where:

e connId: Connection identifier.
e handle: Attribute handle.
e command: Control point command.

5.12.4 HrpcHrsValueUpdate()
Process a value received in an ATT read response, notification, or indication message.

Syntax:
uint8_t HrpcHrsValueUpdate(uintl6_t *pHdTList, attEvt_t *pMsg)
Where:

e pHd1List: Parameter pHd1List must point to an array of length HRPC_HRS_HDL_LIST_LEN.
e pMsg: ATT callback message.

If the ATT handle of the message matches a handle in the handle list the value is processed, otherwise

Copyright © 2011-2016 ARM. All rights reserved. Page 35

Confidential

Profile and Service API

it is ignored.
5.13Heart Rate Profile Sensor

5.13.1 hrpsCfg_t
Heart rate service configurable parameters.

Table 13 Heart rate service parameters

Type Name Description

wsfTimerTicks_t period Measurement timer expiration period in ms.

5.13.2 Hrpslnit()
Initialize the Heart Rate profile sensor.

Syntax:
void HrpsInit(wsfHandlerId_t handlerId, hrpsCfg_t *pCfg)

Where:

e handerId: WSF handler ID of the application using this service.
e pCfg: Configurable parameters.

5.13.3 HrpsMeasStart()
Start periodic heart rate measurement. This function starts a timer to perform periodic measurements.

Syntax:
void HrpsMeasStart(dmConnId_t connId, uint8_t timerEvt, uint8_t hrmCccIdx)

Where:

e connId: DM connection identifier.
e timerEvt: WSF event designated by the application for the timer.
e hrmCccIdx: Index of heart rate CCC descriptor in CCC descriptor handle table.

5.13.4 HrpsMeasStop()
Stop periodic heart rate measurement.

Syntax:

void HrpsMeasStop(void)

5.13.5 HrpsProcMsg()
This function is called by the application when the periodic measurement timer expires.

Syntax:
void HrpsProcMsg(wsfMsgHdr_t *pMsg)

Where:

Copyright © 2011-2016 ARM. All rights reserved. Page 36

Confidential

Profile and Service API

e pMsg: Event message.

5.13.6 HrpsWriteCback()
ATTS write callback for heart rate service. Use this function as a parameter to SvcHrsCbackRegister().

Syntax:

uint8_t HrpsWriteCback(dmConnId_t connld, uintl6_t handle, uint8_t operation,
uintlée_t offset, uintl6e_t len, uint8_t *pValue, attsAttr_t *pAttr)

Where:

5.13.7 HrpsSetFlags()
Set the heart rate measurement flags.

Syntax:

void HrpsSetFlags(uint8_t flags)
Where:

e flags: Heart rate measurement flags.
5.14Health Thermometer Profile Client

5.14.1 Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic
discovery.

Table 14 Health thermometer index enumeration

Name Description

HTPC_HTS_TM_HDL_IDX Temperature measurement.
HTPC_HTS_TM_CCC_HDL_IDX Temperature measurement CCC descriptor.
HTPC_HTS_IT_HDL_IDX Intermediate temperature.
HTPC_HTS_IT_CCC_HDL_IDX Intermediate temperature CCC descriptor.
HTPC_HTS_TT_HDL_IDX Temperature type.
HTPC_HTS_HDL_LIST_LEN Handle list length.

5.14.2 HtpcHtsDiscover()
Perform service and characteristic discovery for Health Thermometer service.

Syntax:
void HtpcHtsDiscover(dmConnId_t connId, uintl6_t *pHdIList)
Where:

e connId: Connection identifier.
e pHdTIList: Characteristic handle list.

Copyright © 2011-2016 ARM. All rights reserved. Page 37

Confidential

Profile and Service API

Parameter pHd1L1ist must point to an array of length HTPC_HTS_HDL_LIST_LEN. If discovery is
successful the handles of discovered characteristics and descriptors will be set in pHd1List.

5.14.3 HtpcHtsValueUpdate()
Process a value received in an ATT read response, notification, or indication message.

Syntax:
uint8_t HtpcHtsValueUpdate(uintl6_t *pHdIList, attEvt_t *pMsg)
Where:

e connlId: Connection identifier.
e pMsg: ATT callback message.

Parameter pHd1L1ist must point to an array of length HTPC_HTS_HDL_LIST_LEN. If the ATT handle of
the message matches a handle in the handle list the value is processed, otherwise it is ignored.

Returns ATT_SUCCESS if handle is found, ATT_ERR_NOT_FOUND otherwise.
5.15Health Thermometer Profile Sensor

5.15.1 htpsCfg_t
Health Thermometer profile sensor configurable parameters.

Table 15 Health thermometer parameters

Type Name Description

wsTfTimerTicks_t period Measurement timer expiration period in ms

5.15.2 Htpslnit()
Initialize the Health Thermometer profile sensor.

Syntax:
void HtpsInit(wsfHandlerId_t handlerId, htpsCfg_t *pCfg)

Where:

e handerId: WSF handler ID of the application using this service.
e pCfg: Configurable parameters.

5.15.3 HtpsMeasStart()
Start periodic temperature measurement. This function starts a timer to perform periodic
measurements.

Syntax:
void HtpsMeasStart(dmConnId_t connId, uint8_t timerEvt, uint8_t itCccIdx)
Where:

Copyright © 2011-2016 ARM. All rights reserved. Page 38

Confidential

Profile and Service API

e connId: DM connection identifier.
e timerEvt: WSF event designated by the application for the timer.
e itCccIdx: Index of intermediate temperature CCC descriptor in CCC descriptor handle table.

5.15.4 HtpsMeasStop()
Stop periodic temperature measurement.

Syntax:
void HtpsMeasStop(void)

5.15.5 HtpsMeasComplete()
Temperature measurement complete.

Syntax:
void HtpsMeasComplete(dmConnId_t connld, uint8_t tmCccIdx)

Where:

e connId: DM connection identifier.
e tmCccIdx: Index of temperature measurement CCC descriptor in CCC descriptor handle table.

5.15.6 HtpsProcMsg()
This function is called by the application when the periodic measurement timer expires.

Syntax:

void HtpsProcMsg(wsfMsgHdr_t *pMsg)
Where:

e pMsg. Event message.

5.15.7 HtpsSetTmFlags()
Set the temperature measurement flags.

Syntax:
void HtpsSetTmFlags(uint8_t flags)
Where:

e flags: Temperature measurement flags.

5.15.8 HtpsSetitFlags()
Set the intermediate temperature flags.

Syntax:
void HtpsSetItFlags(uint8_t flags)

Where:

Copyright © 2011-2016 ARM. All rights reserved. Page 39

Confidential

Profile and Service API

e flags: Intermediate temperature flags.
5.16 Phone Alert Status Profile Client

5.16.1 Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic
discovery.

Table 16 Phone alert handle index enumeration

Name Description

PASPC_PASS_AS_HDL_IDX Alert status.

PASPC_PASS_AS_CCC_HDL_IDX Alert status CCC descriptor.

PASPC_PASS_RS_HDL_IDX Ringer setting.

PASPC_PASS_RS_CCC_HDL_IDX Ringer setting CCC descriptor.

PASPC_PASS_RCP_HDL_IDX Ringer control point.

PASPC_PASS_HDL_LIST_LEN Handle list length.

5.16.2 PaspcPassDiscover()
Perform service and characteristic discovery for Phone Alert Status service.

Syntax:

void PaspcPassDiscover(dmConnId_t connId, uintl6_t *pHdlList)

Where:

e connld: Connection identifier.
e pHdT1List: Characteristic handle list.

Parameter pHd1L1ist must point to an array of length PASPC_PASS_HDL_LIST_LEN. If discovery is
successful the handles of discovered characteristics and descriptors will be set in pHdT1List.

5.16.3 PaspcPassControl()
Send a command to the ringer control point.

Syntax:
void PaspcPassControl(dmConnId_t connld, uintl6_t handle, uint8_t command)

Where:

e connlId: Connection identifier.
e handle: Attribute handle.
e command: Control point command.

5.16.4 PaspcPassValueUpdate()
Process a value received in an ATT read response, notification, or indication message.

Copyright © 2011-2016 ARM. All rights reserved. Page 40

Confidential

Profile and Service API

Syntax:
uint8_t PaspcPassValueUpdate(uintl6_t *pHdlList, attEvt_t *pMsg)

Where:

e pHdIList: Characteristic handle list.
e pMsg: ATT callback message.

Parameter pHd1L1ist must point to an array of length PASPC_PASS_HDL_LIST_LEN. If the attribute
handle of the message matches a handle in the handle list the value is processed, otherwise it is ignored.

Returns ATT_SUCCESS if handle is found, ATT_ERR_NOT_FOUND otherwise.
5.17Pulse Oximeter Profile Client

5.17.1 Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic
discovery.

Table 17 Glusose profile handle index enumeration

Name Description

PLXPC_PLXS_PLXSC_HDL_IDX Pulse oximeter spot check measurement.

PLXPC_PLXS_PLXSC_CCC_HDL_IDX Pulse oximeter spot check measurement CCC descriptor.

PLXPC_PLXS_PLXC_HDL_IDX Pulse oximeter continuous measurement.

PLXPC_PLXS_PLXC_CCC_HDL_IDX Pulse oximeter continuous measurement CCC
descriptor.

PLXPC_PLXS_PLXF_HDL_IDX Pulse oximeter features.

PLXPC_PLXS_RACP_HDL_IDX Record access control point.

PLXPC_PLXS_RACP_CCC_HDL_IDX Record access control point CCC descriptor.

PLXPC_PLXS_HDL_LIST_LEN Handle list length

5.17.2 PIxpcPIxsDiscover()
Perform service and characteristic discovery for Pulse oximeter service.

Syntax:
void P1xpcP1xsDiscover(dmConnId_t connId, uintl6_t *pHdlList)

Where:

e connId: Connection identifier.
e pHdT1List: Characteristic handle list.

Parameter pHd1L1ist must point to an array of length PLXPC_PLXS_HDL_LIST_LEN. If discovery is
successful the handles of discovered characteristics and descriptors will be set in pHdTList.

Copyright © 2011-2016 ARM. All rights reserved. Page 41

Confidential

Profile and Service API

5.17.3 PIxpcPIxsValueUpdate()
Process a value received in an ATT read response, notification, or indication message.

Syntax:
uint8_t PlxpcPlxsValueUpdate(uintl6_t *pHdlList, attEvt_t *pMsg)

Where:

e pHdIList: Characteristic handle list.
e pMsg: ATT callback message.

Parameter pHd1L1ist must point to an array of length PLXPC_PLXS_HDL_LIST_LEN. If the ATT handle
of the message matches a handle in the handle list the value is processed, otherwise it is ignored.

Return ATT_SUCCESS if handle is found, ATT_ERR_NOT_FOUND otherwise.

5.17.4 PIxpcPIxsRacpSend()
Send a command to the pulse oximeter service record access control point.

Syntax:

void P1xpcP1xsRacpSend(dmConnId_t connId, uintl6_t handle, uint8_t opcode,
uint8_t oper)

Where:

e connId: Connection identifier.

e handle: Attribute handle.

e opcode: Command opcode.

e oper: Command operator or O if no operator required.

5.18 Pulse Oximeter Profile Sensor

5.18.1 plxpsCfg_t
Pulse oximeter sensor configurable parameters.

Table 18 Pulse oximeter profile parameters

Type Name Description

wsfTimerTicks_t period Measurement timer expiration period in ms.

5.18.2 Plxpsinit()
Initialize the Pulse Oximeter profile sensor.

Syntax:
void PlxpsInit(wsfHandlerId_t handlerId, plxpsCfg_t *pCfg)

Where:
e handerId: WSF handler ID of the application using this service.

Copyright © 2011-2016 ARM. All rights reserved. Page 42

Confidential

Profile and Service API

e pCfg: Configurable parameters.

5.18.3 PIxpsProcMsg()
This function is called by the application when a message that requires processing by the pulse
oximeter profile sensor is received.

Syntax:
void P1xpsProcMsg(wsfMsgHdr_t *pMsg)

Where:
e pMsg: Event message.

5.18.4 PIxpsBtn()
Handle a button press.

Syntax:
void PIxpsBtn(dmConnId_t connlId, uint8_t btn)

Where:

e connld: connection identifier.
e btn: Button press.

5.18.5 PIxpsWriteCback()
ATTS write callback for pulse oximeter service record access control point.

Syntax:

uint8_t PlxpsWriteCback(dmConnId_t connId, uintl6_t handle, uint8_t operation,
uintlée_t offset, uintl6e_t len, uint8_t *pValue, attsAttr_t *pAttr)

Use this function as a parameter to SvcP1xsCbackRegister().

5.18.6 PlxpsSetFeature()
Set the supported features of the pulse oximeter sensor.

Syntax:

void PlxpsSetFeature(uintl6_t feature, uintl6_t measStatus, uint32_t
sensorStatus)

Where:

e feature: Feature bitmask.
e measStatus: Measurement status.
e sensorStatus: Sensor status.

5.18.7 PlxpsSetCccldx()
Set the CCCD index used by the application for pulse oximeter service characteristics.

Syntax:

Copyright © 2011-2016 ARM. All rights reserved. Page 43

Confidential

Profile and Service API

void PIxpsSetCccIdx(uint8_t plxmCccIdx, uint8_t plxmcCccIdx, uint8_t racpCccIdx)

Where:

e plxmCccIdx: Pulse Oximeter measurement CCCD index.
e plxmcCccIdx: Pulse Oximeter measurement context CCCD index.
e racpCccIdx: Record access control point CCCD index.

5.18.8 PlxpsMeasStart()

Start periodic pulse oximeter measurement. This function starts a timer to perform periodic
measurements.

Syntax:
void P1xpsMeasStart(dmConnId_t connId, uint8_t timerEvt, uint8_t pTxmCccIdx)
Where:

e connId: DM connection identifier.

e timerEvt: WSF event designated by the application for the timer.

e plxmCccIdx: Index of the pulse oximeter measurement CCC descriptor in CCC descriptor
handle table.

5.18.9 PlIxpsMeasStop()
Stop periodic pulse oximiter measurement.

Syntax:
void P1xpsMeasStop(void)
5.19Runners Speed and Cadence Profile Sensor

5.19.1 RscpsSetParameter()
Set a running speed measurement parameter.

Syntax:
void RscpsSetParameter(uint8_t type, uint32_t value)

Where:

e type: Parameter identifier.
e value: Measurement value.

5.19.2 RscpsSetFeatures()
Set the features attribute.

Syntax:
void RscpsSetFeatures(uintl6_t features)

Where:

Copyright © 2011-2016 ARM. All rights reserved. Page 44

Confidential

Profile and Service API

e features: Features bitmask.

5.19.3 RscpsSendSpeedMeasurement()
Notifies the collector of a Running Speed and Cadence Measurement.

Syntax:

void RscpsSendSpeedMeasurement(dmConnId_t connId)
Where:

e connId: Features bitmask.
5.20Scan Parameter Profile Server

5.20.1 ScppsRegisterCback()
Called to register an application scan interval window callback function.

Syntax:
void ScppsRegisterCbhack(ScppsAppChack_t *cback)

5.20.2 ScppsAttsWriteCback()
Called to register an application scan interval window callback function.

Syntax:
uint8_t ScppsAttsWriteCback(dmConnId_t connId, uintl6_t handle, uint8_t

operation, uintl6_t offset, uintl6e_t len, uint8_t *pValue, attsAttr_t
*pAttr)

5.21Time Profile Client

5.21.1 Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic
discovery.

Table 19 Time profile handle index enumeration

Name Description

TIPC_CTS_CT_HDL_IDX Current time.

TIPC_CTS_CT_CCC_HDL_IDX Current time client characteristic configuration descriptor.
TIPC_CTS_LTI_HDL_IDX Local time information.

TIPC_CTS_RTI_HDL_IDX Reference time information.
TIPC_CTS_HDL_LIST_LEN Handle list length.

5.21.2 TipcCtsDiscover()

Perform service and characteristic discovery for Current Time service. Parameter pHd1L1ist must point
to an array of length TIPC_CTS_HDL_LIST_LEN. If discovery is successful the handles of discovered

Copyright © 2011-2016 ARM. All rights reserved. Page 45

Confidential

Profile and Service API

characteristics and descriptors will be set in pHd1List.
Syntax:
void TipcCtsDiscover(dmConnId_t connId, uintl6_t *pHdTList)

Where:

e connld: Connection identifier.
e pHdT1List: Characteristic handle list.

5.21.3 TipcCtsValueUpdate()

Process a value received in an ATT read response, notification, or indication message. Parameter
pHd1L1ist must point to an array of length TIPC_CTS_HDL_LIST_LEN. If the attribute handle of the
message matches a handle in the handle list the value is processed, otherwise it is ignored.

Syntax:
uint8_t TipcCtsValueUpdate(uintl6_t *pHdlList, attEvt_t *pMsg)

Where:

e Where:pHd1List: Characteristic handle list.
e pMsg: ATT callback message.

Return ATT_SUCCESS if handle is found, ATT_ERR_NOT_FOUND otherwise.
5.22Weight Scale Profile Client

5.22.1 WspcWssDiscover ()

Perform service and characteristic discovery for Weight Scale service. Parameter pHd1L1st must point
to an array of length WSPC_WSS_HDL_LIST_LEN. If discovery is successful the handles of discovered
characteristics and descriptors will be set in pHd1List.

Syntax:
void WspcWssDiscover(dmConnId_t connId, uintl6_t *pHdIList)

e \Where:connId: Connection identifier.
e pHd1List: Characteristic handle list.

5.22.2 WspcWssValueUpdate()
Process a value received in an ATT read response, notification, or indication message.

Syntax:
uint8_t WspcWssValueUpdate(uintl6_t *pHdlList, attEvt_t *pMsg)

Where:

e pHdTIList: Characteristic handle list.
e pMsg: ATT callback message.

Copyright © 2011-2016 ARM. All rights reserved. Page 46

Confidential

Profile and Service API

Parameter pHd1L1ist must point to an array of length WSPC_WSS_HDL_LIST_LEN. If the ATT handle of
the message matches a handle in the handle list the value is processed, otherwise it is ignored.

Return ATT_SUCCESS if handle is found, ATT_ERR_NOT_FOUND otherwise.
5.23Weight Scale Profile Sensor

5.23.1 WspsMeasComplete()
Weight scale measurement complete.

Syntax:
void WspsMeasComplete(dmConnId_t connId, uint8_t wsmCccIdx)

Where:

e connId: Connection identifier.
e wsmCccIdx: Index of weight scale measurement CCC descriptor in CCC descriptor handle
table.

5.23.2 WspsSetWsmFlags()
Set the weight scale measurement flags.

Syntax:

void WspsSetWsmFlags(uint8_t flags)
Where:

e flags: Weight scale measurement flags.
5.24Cordio Proprietary Profile Client

5.24.1 Handle Index Enumeration

Enumeration of handle indexes of characteristics to be discovered. These indexes give the location of
their respective characteristic handles in the handle list returned from service and characteristic
discovery.

Table 20 Handle index enumeration

Name Description

WPC_P1_DAT_HDL_IDX Proprietary data characteristic.
WPC_P1_NA_CCC_HDL_IDX Proprietary data client characteristic configuration descriptor.
WPC_P1_HDL_LIST_LEN Handle list length.

5.24.2 WpcP1Discover()

Perform service and characteristic discovery for Cordio proprietary service P1. Parameter pHd1List
must point to an array of length WPC_P1_HDL_LIST_LEN. If discovery is successful the handles of
discovered characteristics and descriptors will be set in pHd1List.

Syntax:

Copyright © 2011-2016 ARM. All rights reserved. Page 47

Confidential

Profile and Service API

void WpcP1lDiscover(dmConnId_t connld, uintl6_t *pHdTList)

Where:

e connId: Connection identifier.
e pHd1List: Characteristic handle list

Copyright © 2011-2016 ARM. All rights reserved. Page 48

Confidential

