ARM® Cordio Profiles

ARM-EPM-115883 1.0

App Framework API

Confidential

ARM

Copyright © 2011-2016 ARM. All rights reserved. Page 1

Confidential

ARM® Cordio App Framework API

Reference Manual
Copyright © 2011-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change
- . . First Wicentric release for 1.1 as
25 September 2015 Confidential 2011-0020
1 March 2016 A Confidential First ARM release for 1.1
24 August 2016 A Confidential AUSPEX # / API update

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any
form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to
any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the
information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology
or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or
creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for
publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this
document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or
understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to
create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without
notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version
of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.
Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2011-2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

Copyright © 2011-2016 ARM. All rights reserved. Page 2

Confidential

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status

This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with
the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address
http://www.arm.com

Copyright © 2011-2016 ARM. All rights reserved. Page 3

Confidential

Contents

ARM® Cordio Profiles

1

Preface

1.1 About this book

1.2

1.1.1Intended audience

1.1.2 Using this book
1.1.3Terms and abbreviations
1.1.4Conventions

1.1.5 Additional reading
Feedback

1.2.1 Feedback on content

Introduction

2.1

2.2

Overview

Modules

Main Interface

3.1

Constants and Data Types

3.1.1 Discoverable/connectable mode

3.1.2 Advertising and scan data storage locations
3.1.3 Service discovery and configuration client status
3.1.5Actions for incoming requests

3.1.7 appAdvCig_t

3.1.8 appExtAdvCfg_t

3.1.9 appSlaveCfg_t

3.1.10 appMasterCfg_t

3.1.11 appSecCfg_t

3.1.12 appUpdateCfg_t

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

App Framework API

Page 4

11
11
11
11
11
12
13
13

13

14
14

14

15
15
15
15
15
16
16
16
16
17
17

17

App Framework API

3.1.13 appReqgActCfg_t 18
3.1.14 appDiscCfg_t 18
3.1.15 appCfg_t 18
3.1.16 appDevinfo_t 18
3.2 Global Variables 19
3.2.1 pAppAdvCfg 19
3.2.2 pAppExtAdvCig 19
3.2.3pAppSlaveCfg 19
3.2.4 pAppMasterCfg 19
3.2.5pAppSecCfg 19
3.2.6 pAppUpdateCfg 19
3.2.7 pAppDiscCfg 19
3.2.8 pAppCfg 19
3.2.9 pAppMasterReqActCfg 19
3.2.10 pAppSlaveRegActCfg 19
3.3 Initialization Functions 19
3.3.1 AppSlavelnit() 19
3.3.2 AppMasterlnit() 20
3.4 Advertising Functions 20
3.4.1 AppAdvSetData() 20
3.4.2 AppAdvStart() 20
3.4.3 AppAdvStop() 20
3.4.4 AppAdvSetAdValue() 21
3.4.5 AppSlavelsAdvertising() 21
1.3 Advertising Extensions 21
3.4.6 AppExtAdvSetData() 22
3.4.7 AppExtAdvStart() 22
3.4.8 AppExtAdvStop() 22
Copyright © 2011-2016 ARM. All rights reserved. Page 5

Confidential

App Framework API

3.4.9 AppExtAdvSetAdValue() 22
3.5 Scanning Functions 23
3.5.1 AppScanStart() 23
3.5.2 AppScanStop() 23
3.5.3*AppScanGetResult() 23
3.5.4 AppScanGetNumResults() 24
3.6 Connection and Security Functions 24
3.6.1 AppConnClose() 24
3.6.2 AppConnlsOpen() 24
3.6.3 AppHandlePasskey() 24
3.6.4 AppSetBondable() 25
3.6.5 AppSlaveSecurityReq() 25
3.6.6 AppConnAccept() 25
3.6.7 AppExtConnAccept() 25
3.6.8 AppMasterSecurityReq() 26
3.7 Discovery Functions 26
3.7.1 AppDiscinit() 26
3.7.2 AppDiscRegister() 26
3.7.3 AppDiscSetHdIList() 26
3.7.4 AppDiscComplete() 26
3.7.5 AppDiscFindService() 27
3.7.6 AppDiscConfigure() 27
3.7.7 AppDiscServiceChanged() 28
3.7.8 AppDiscProcDmMsg() 28
3.7.9 AppDiscProcAttMsg() 28
3.8 Message Processing Functions 28
3.8.1 AppSlaveProcDmMsg() 28
3.8.2 AppSlaveSecProcDmMsg() 28

Copyright © 2011-2016 ARM. All rights reserved. Page 6

Confidential

3.9

3.8.3 AppMasterProcDmMsg()
3.8.4 AppMasterSecProcDmMsg()
3.8.5 AppServerConnCback()
Callback Interface

3.9.1 (*appDiscCback_t)()

DB Interface

4.1

4.2

Constants and Data Types
4.1.1appDbHdI_t

4.1.2 APP_DB_HDL_NONE
Functions

4.2.1 AppDbinit()

4.2.2 AppDbNewRecord()
4.2.3 AppDbDeleteRecord()
4.2.4 AppDbValidateRecord()
4.2.5 AppDbCheckValidRecord()
4.2.6 AppDbCheckBonded()
4.2.7 AppDbDeleteAllRecords()
4.2.8 AppDbFindByAddr()
4.2.9 AppDbFindByLtkReq()
4.2.10 AppDbGetHdI()
4.2.11 *AppDbGetKey()
4.2.12 AppDbSetKey()
4.2.13 *AppDbGetCccThbl()
4.2.14 AppDbSetCccTblValue()
4.2.15 AppDbGetDiscStatus()
4.2.16 AppDbSetDiscStatus()
4.2.17 AppDbGetHdIList()

4.2.18 AppDbSetHdIList()

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

App Framework API

Page 7

29
29
29
29

29

30
30
30
30
30
30
30
30
31
31
31
31
31
32
32
32
32
33
33
33
33
34
34

5

6

4.2.19 *AppDbGetDevName()

4.2.20 AppDbSetDevName()

Ul Interface

5.1

5.2

5.3

Constants and Data Types

5.1.1 Ul event enumeration

5.1.2 Button press enumeration

5.1.3LED values

5.1.4 Sound tone values
5.1.5appUiSound_t
5.1.6appUiLed_t
Functions

5.2.1 AppUiAction()

5.2.2 AppUiDisplayPasskey()

5.2.3 AppUiDisplayRssi()
5.2.4 AppUiBtnRegister()
5.2.5 AppUiSoundPlay()
5.2.6 AppUiSoundStop()
5.2.7 AppUiLedStart()
5.2.8 AppUiLedStop()
Callback Interface

5.3.1 (*appUiBtnCback_t)()

HW Interface

6.1

Constants and Data Types
6.1.1appHrm_t

6.1.2 appDateTime_t
6.1.3appBpm_t

6.1.4 appWsm_t

6.1.5appTm_t

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

App Framework API

Page 8

34

34

34
35
35
35
36
36
37
37
37
37
37
38
38
38
38
38
39
39
39

39
39
39
39
40
40
41

App Framework API

6.1.6 appPIxCm_t 41
6.1.7 appPIxScm_t 41
6.2 Functions 42
6.2.1 AppHwBattRead() 42
6.2.2 AppHwWHrmRead() 42
6.2.3 AppHwBpmRead() 42
6.2.4 AppHwWWsmRead() 43
6.2.5 AppHwWTmRead() 43
6.2.6 AppHWTmSetUnits () 43
6.2.7 AppHwPIxcmRead() 44
6.2.8 AppHwPIxscmRead() 44
Copyright © 2011-2016 ARM. All rights reserved. Page 9

Confidential

App Framework API

1 Preface
This preface introduces the Cordio Application Framework API Reference Manual.

1.1 About this book

This document describes the Cordio Application Framework AP and lists the API functions and their
parameters.

1.1.1 Intended audience

This book is written for experienced software engineers who might or might not have experience with
ARM products. Such engineers typically have experience of writing Bluetooth applications but might
have limited experience of the Cordio software stack.

It is also assumed that the readers have access to all necessary tools.

1.1.2 Using this book
This book is organized into the following chapters:

e Introduction
Read this for an overview of the API.
e Main Interface
Read this for a description of the main interface.
e DB Interface
Read this for a description of the device database interface.
e Ul Interface
Read this for a description of the Ul interface API functions.
e HW Interface
Read this for a description of hardware interface API functions.

1.1.3 Terms and abbreviations
For a list of ARM terms, see the ARM glossary.

Terms specific to the Cordio software are listed below:

Term Description
ACL Asynchronous Connectionless data packet
AD Advertising Data
AE Advertising Extensions
ARQ Automatic Repeat reQuest
ATT Attribute Protocol, also attribute protocol software subsystem
ATTC Attribute Protocol Client software subsystem
ATTS Attribute Protocol Server software subsystem
CCCorCCCD Client Characteristic Configuration Descriptor
CID Connection Identifier
CSRK Connection Signature Resolving Key
Copyright © 2011-2016 ARM. All rights reserved. Page 11

Confidential

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

App Framework API

DM Device Manager software subsystem

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

0o0B Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem
SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.

1.1.4 Conventions

The following table describes the typographical conventions:

Style

Italic

bold

MONOSPACE

MONOSPACE

monospace italic

Typographical conventions
Purpose

Introduces special terminology, denotes cross-references, and
citations.

Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

Copyright © 2011-2016 ARM. All rights reserved. Page 12

Confidential

App Framework API

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they
appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical
meanings, that are defined in the ARM® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,
and UNPREDICTABLE.

1.1.5 Additional reading
This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.
Other publications
This section lists relevant documents published by third parties:

e Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

1.2.1 Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

The title.

The number, ARM-EPM-115157.

The page numbers to which your comments apply.
A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.

Copyright © 2011-2016 ARM. All rights reserved. Page 13

Confidential

http://infocenter.arm.com/

App Framework API

2 Introduction

This document describes the API of the App Framework subsystem. The App Framework is a service
layer for applications that simplifies application development.

2.1 Overview

The App Framework performs many operations common to Bluetooth LE embedded applications, such
as:

e Application-level device, connection, and security management.

e Simple user interface abstractions for button press handling, sounds, display, and other user
feedback.

e An abstracted device database for storing bonding data and other device parameters.

The relationship between the App Framework, the application, and the protocol stack is shown in

Figure 1.
Application
Main Ul
App Framework
Protocol Stack
Figure 1. App Framework software system diagram.
2.2 Modules

The App Framework consists of several modules, each with their own API interface file.

Table 1 APl modules

Module Interface file Description

Main app_api.h Device, connection, and security management.
Ul app_ui.h User interface abstraction.

DB app_db.h Device database.

HW app_hw.h Hardware sensor interface abstraction.

The Main module is designed to be platform-independent while the Ul and DB modules are designed
with platform-independent APIs and platform-specific implementations.

Copyright © 2011-2016 ARM. All rights reserved. Page 14

Confidential

App Framework API

3 Main Interface

3.1 Constants and Data Types

3.1.1 Discoverable/connectable mode
Discoverable/connectable mode used by function AppAdvStart().

Table 2 Discoverable/connectable mode

Name Description

APP_MODE_CONNECTABLE Connectable mode.

APP_MODE_DISCOVERABLE Discoverable mode.

APP_MODE_AUTO_INIT Automatically configure mode based on bonding
info.

3.1.2 Advertising and scan data storage locations
Advertising and scan data storage locations.

Table 3 Advertising and scan data storage locations

Name Description

APP_ADV_DATA_CONNECTABLE Advertising data for connectable mode.

APP_SCAN_DATA_CONNECTABLE Scan data for connectable mode.

APP_ADV_DATA_DISCOVERABLE Advertising data for discoverable mode.

APP_SCAN_DATA_DISCOVERABLE Scan data for discoverable mode.

3.1.3 Service discovery and configuration client status
Service discovery and configuration client status.

3.1.4 Table 4 Service discovery and configuration client status

Name Description
APP_DISC_INIT No discovery or configuration complete.
APP_DISC_SEC_REQUIRED Security required to complete configuration.
APP_DISC_START Service discovery started.
APP_DISC_CMPL Service discovery complete.
APP_DISC_FAILED Service discovery failed.
APP_DISC_CFG_START Service configuration started.
Copyright © 2011-2016 ARM. All rights reserved. Page 15

Confidential

App Framework API

APP_DISC_CFG_CONN_START Configuration for connection setup started.

APP_DISC_CFG_CMPL Service configuration complete.

3.1.5 Actions for incoming requests
Actions for incoming requests.

3.1.6 Table 5 Actions for incoming requests

Name Description

APP_ACT_ACCEPT Accept incoming request.

APP_ACT_REJECT Reject incoming request.

APP_ACT_NONE Do nothing—app will handle incoming request.

3.1.7 appAdvCfg_t
Configurable parameters for advertising.

Table 6 appAdvCfg _t

Type Name Description
uintl6_t advDuration[] Advertising durations in ms.
uintlé_t advInterval[] Advertising intervals 0.625 ms units.

3.1.8 appExtAdvCfg_t
Configurable parameters for extended advertising.

Table 7 appExtAdvCfg_t

Type Name Description

uintl6_t advDuration[] Advertising durations in ms.

uintl6_t advInterval[] Advertising intervals 0.625 ms units.

uint8_t maxEaEvents[] Maximum number of extended advertising events
Controller will send prior to terminating extended
advertising.

bool_t uselLegacyPdu[] Whether to use legacy advertising PDUs with

extended advertising. If set to TRUE then length of
advertising data cannot exceed 31octets.

3.1.9 appSlaveCfg_t
Configurable parameters for slave.

Copyright © 2011-2016 ARM. All rights reserved. Page 16

Confidential

App Framework API

Table 8 appSlaveCfg_t

Type

Name

Description

uint8_t

connMax

Maximum connections.

3.1.10 appMasterCfg_t

Configurable parameters for master.

Table 9 appMasterCfg_t

Type Name Description

uintlé_t scanInterval The scan interval, in 0.625 ms units.

uintl6_t scanWindow The scan window, in 0.625 ms units. Must be less
than or equal to scan interval.

uintlé_t scanDuration The scan duration in ms. Set to zero to scan
until stopped.

uint8_t discMode The GAP discovery mode (general, limited, or none).

uint8_t scanType The scan type (active or passive).

3.1.11 appSecCfg_t

Configurable parameters for security.

Table 10 appSecCfg_t

Type Name Description

uint8_t auth Authentication and bonding flags.

uint8_t iKeyDist Initiator key distribution flags.

uint8_t rkeyDist Responder key distribution flags.

bool_t oob TRUE if out-of-band pairing data is present.
bool_t initiateSec TRUE to initiate security upon connection.

3.1.12 appUpdateCfg_t

Configurable parameters for connection parameter update.

Table 11 appUpdateCfg_t

Type

Name

Description

wsfTimerTicks_t

idTePeriod

Connection idle period in ms before attempting

Copyright © 2011-2016 ARM. All rights reserved.

Page 17

Confidential

App Framework API

connection parameter update; set to zero to disable.

uintl6_t connIntervalMin Minimum connection interval in 1.25ms units.
uintlée_t connIntervalMax Maximum connection interval in 1.25ms units.
uintl6_t connlLatency Connection latency.

uintlé_t supTimeout Supervision timeout in 10ms units.

uint8_t maxAttempts Number of update attempts before giving up.

3.1.13 appRegActCfg_t
Configurable parameters for incoming request actions.

Table 12 appReqActCfg_t

Type Name Description

uint8_t remConnParamRegAct Action for the remote connection parameter request.

3.1.14 appDiscCfg_t
Configurable parameters for slave.

Table 13 appDiscCfg_t

Type Name Description

bool_t connMax TRUE to wait for a secure connection before
initiating discovery.

3.1.15 appCfg_t
Configurable parameters for application.

Table 14 appCfg _t

Type Name Description
bool_t abortDisc TRUE to abort service discovery if service not found.
bool_t disconnect TRUE to disconnect if ATT transaction times out.

3.1.16 appDevinfo_t
Device information data type.

Table 15 appDevinfo_t

Type Name Description

bdAddr_t addr Peer device address.

uint8_t addrType Peer address type.

uint8_t directAddrType Type of address directed advertisement is addressed
Copyright © 2011-2016 ARM. All rights reserved. Page 18

Confidential

App Framework API

to.

bdAddr_t directAddr Address directed advertisement is addressed to.

3.2 Global Variables

3.2.1 pAppAdvCfg

This is a pointer to the advertising configurable parameters used by the application. If advertising is
used, the application must set this variable during system initialization.

3.2.2 pAppExtAdvCfg

This is a pointer to the extended advertising configurable parameters used by the application. If
extended advertising is used, the application must set this variable during system initialization.

3.2.3 pAppSlaveCfg

This is a pointer to the slave configurable parameters used by the application. If slave mode is used,
the application must set this variable during system initialization.

3.2.4 pAppMasterCfg

This is a pointer to the master configurable parameters used by the application. If master mode is used,
the application must set this variable during system initialization.

3.25 pAppSecCfg
This is a pointer to the security-related configurable parameters used by the application. The
application must set this variable during system initialization.

3.2.6 pAppUpdateCfg
This is a pointer to the connection parameter update parameters used by the application. The
application must set this variable during system initialization.

3.2.7 pAppDiscCfg
This is a pointer to the discovery parameters used by the application. The application must set this
variable during system initialization.

3.2.8 pAppCfg
This is a pointer to the application parameters used by the application. The application must set this
variable during system initialization.

3.2.9 pAppMasterRegActCfg

This is a pointer to the master incoming request actions used by the application. The application must
set this variable during system initialization.

3.2.10 pAppSlaveRegActCfg

This is a pointer to the master incoming request actions used by the application. The application must
set this variable during system initialization.

3.3 Initialization Functions

3.3.1 AppSlavelnit()
Initialize the App Framework for operation as a Bluetooth LE slave.

Copyright © 2011-2016 ARM. All rights reserved. Page 19

Confidential

App Framework API

Syntax:
void AppSTavelInit(voidDesc)

This function is generally called once during system initialization before any other App Framework
API functions are called.

3.3.2 AppMasterlnit()
Initialize the App Framework for operation as a Bluetooth LE master.

Syntax:
void AppMasterInit(void)

This function is generally called once during system initialization before any other App Framework
API functions are called.

3.4 Advertising Functions

3.4.1 AppAdvSetData()

Set advertising or scan data. Separate advertising and scan data can be set for connectable and
discoverable modes. The application must allocate and maintain the memory pointed to by pData
while the device is advertising.

Syntax:
void AppAdvSetData(uint8_t Tocation, uint8_t Ten, uint8_t *pData)

Where:

e Tlocation: Data location. See 3.1.2.
e Ten: Length of the data. Maximum length is 31 bytes.
e pData: Pointer to the data.

3.4.2 AppAdvsStart()
Start advertising using the parameters for the given mode.

Syntax:
void AppAdvStart(uint8_t mode)
Where:
e mode: Discoverable/connectable mode. 3.1.1.

3.4.3 AppAdvStop()
Stop advertising.

Syntax:
void AppAdvStop(void)

The device will no longer be connectable or discoverable.

Copyright © 2011-2016 ARM. All rights reserved. Page 20

Confidential

App Framework API

3.4.4 AppAdvSetAdValue()

Set the value of an advertising data element in the advertising or scan response data. If the element
already exists in the data then it is replaced with the new value. If the element does not exist in the data
it is appended to it, space permitting.

There is special handling for the device name (AD type DM_ADV_TYPE_LOCAL_NAME). If the name can
only fit in the data if it is shortened, the name is shortened and the AD type is changed to
DM_ADV_TYPE_SHORT_NAME.

Syntax:

bool_t AppAdvSetAdValue(uint8_t Tocation, uint8_t adType, uint8_t len, uint8_t
*pValue)

Where:

e Tocation: Data location.

e adType: Advertising data element type.

e Ten: Length of the value. Maximum length is 29 bytes.
e pValue: Pointer to the value.

Return TRUE if the element was successfully added to the data, FALSE otherwise.

3.4.5 AppSlavelsAdvertising()

Set the advertising type, which can be DM_ADV_CONN_UNDIRECT, DM_ADV_DISC_UNDIRECT, or
DM_ADV_NONCONN_UNDIRECT.

Syntax:
bool_t AppSlavelIsAdvertising(void)

Return TRUE if device is advertising, FALSE otherwise.

1.3 Advertising Extensions

To enable Advertising Extensions (AE) within an application:

- Add the following files to the project
app_slave_ae.c (for slave role)
dm_adv_ae.c (for advertising role)
dm_conn_master_ae.c (for central role - Master)
dm_conn_slave_ae.c (for peripheral role - Slave)
dm_scan_ae.c (for scanning role)
hci_cmd_ae.c (for HCI command interface)

o O O O O O

- Configure AE in wsfOslInit() through proper DM initialization by:
Table 16 DM AE Initialization API

For Replace With
Advertising Role DmAdvInit() DmExtAdvInit()
Copyright © 2011-2016 ARM. All rights reserved. Page 21

Confidential

App Framework API

Scanning Role

DmScanlnit()

DmExtScanlinit()

3.4.6

Peripheral Role DmConnSlavelnit() DmExtConnSlavelnit()
Central Role DmConnMasterlnit() DmExtConnMasterInit()
AppExtAdvSetData()

Set extended advertising data. Separate advertising and scan data can be set for connectable and
discoverable modes. The application must allocate and maintain the memory pointed to by pData
while the device is advertising.

Syntax:

void AppExtAdvSetData(uint8_t advHandle, uint8_t location, uintl6_t Ten, uint8_t

Where:

3.4.7

Start extended advertising using the parameters for the given mode.

Syntax:

*pData, uintl6_t buflLen)

advHandle: Advertising handle.
location: Data location. See 3.1.2.

Ten: Length of the data. Maximum length is 31 bytes.

pData: Pointer to the data.

bufLen: Length of the data buffer maintained by Application. Minimum length is 31 bytes.

AppExtAdvStart()

void AppExtAdvStart(uint8_t numSets, uint8_t *pAdvHandles, uint8_t mode)

Where:

numSets: Number of advertising sets.

pAdvHandles: Advertising handles array.

mode: Discoverable/connectable mode. 3.1.1.

3.4.8

AppExtAdvStop()

Stop extended advertising. If the number of sets is set to 0 then all advertising sets are disabled.

Syntax:

void AppExtAdvStop(uint8_t numSets, uint8_t *pAdvHandles)

Where:

numSets: Number of advertising sets.

pAdvHandles: Advertising handles array.

3.4.9

AppExtAdvSetAdValue()

Set the value of an advertising data element in the extended advertising or scan response data. If the
element already exists in the data then it is replaced with the new value. If the element does not exist in

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

Page 22

App Framework API

the data it is appended to it, space permitting.

There is special handling for the device name (AD type DM_ADV_TYPE_LOCAL_NAME). If the name can
only fit in the data if it is shortened, the name is shortened and the AD type is changed to
DM_ADV_TYPE_SHORT_NAME.

Syntax:

bool_t AppExtAdvSetAdValue(uint8_t advHandle, uint8_t Tocation, uint8_t adType,
uint8_t len, uint8_t *pValue)

Where:

e advHandle: Advertising handle.

e Tocation: Data location.

e adType: Advertising data element type.

e Ten: Length of the value. Maximum length is 29 bytes.
e pValue: Pointer to the value.

Return TRUE if the element was successfully added to the data, FALSE otherwise.
3.5 Scanning Functions

3.5.1 AppScanStart()

This function is called to start scanning. A scan is performed using the given discoverability mode,
scan type, and duration.

Syntax:

void AppScanStart(uint8_t mode, uint8_t scanType, uintl6_t duration)

Where:

e mode: Discoverability mode. See the Device Manager API Reference Manual.

e scanType: Scan type. See Device Manager APl Reference Manual.

e duration: The scan duration, in milliseconds. If set to zero, scanning will continue until
AppScanStop() is called.

3.5.2 AppScanStop()
This function is called to stop scanning.

Syntax:
void AppScanStop(void)

3.5.3 *AppScanGetResult()
Get a stored scan result from the scan result list. The first result is at index zero.

Syntax:
appDevInfo_t *AppScanGetResult(uint8_t idx))

Where:

Copyright © 2011-2016 ARM. All rights reserved. Page 23

Confidential

App Framework API

e idx: Index of result in scan result list.

This function returns a pointer to the scan result device information or NULL if the index contains no
result.

3.5.4 AppScanGetNumResults()
Get the number of stored scan results.

Syntax:
void)
Where:

int8_t AppScanGetNumResults(void)
3.6 Connection and Security Functions

3.6.1 AppConnClose()
Close a connection with the given connection identifier.

Syntax:
void AppConnClose(dmConnId_t connId)

Where:
e connId: Connection identifier. See Device Manager API Reference Manual.

3.6.2 AppConnlsOpen()
Check if a connection is open.

Syntax:
dmConnId_t AppConnIsOpen(void)

This function returns the connection identifier of the open connection. If operating as a master with
multiple simultaneous connections, the returned connection identifier is for the first open connection
found.

3.6.3 AppHandlePasskey()

Handle a passkey request during pairing. If the passkey is to be displayed, a random passkey is
generated and displayed. If the passkey is to be entered, the user is prompted to enter the passkey.

Syntax:
void AppHandlePasskey(dmSecAuthReqIndEvt_t *pAuthReq)

Where:

e pAuthReq: DM authentication requested event structure. See Device Manager API Reference
Manual.

Copyright © 2011-2016 ARM. All rights reserved. Page 24

Confidential

App Framework API

3.6.4 AppSetBondable()

Set the bondable mode of the device. When a device is in bondable mode it can pair with a peer device
and store the keys exchanged during pairing.

Syntax:
void AppSetBondable(bool1_t bondable)

Where:
e bondable: TRUE to set device to bondable, FALSE to set to non-bondable.

3.6.5 AppSlaveSecurityReq()
Initiate a request for security as a slave device. This function will send a message to the master peer
device requesting security. The master device should either initiate encryption or pairing.

Syntax:
void AppSlaveSecurityReq(dmConnId_t connId)

Where:
e connId: Connection identifier. See Device Manager API Reference Manual.

3.6.6 AppConnAccept()
Accept a connection to a peer device with the given address.

Syntax:

void AppConnAccept(uint8_t advType, uint8_t addrType, uint8_t *pAddr)

Where:

e advType: Advertising type.
e addrType: Address type.
e pAddr: Peer device address.

3.6.7 AppExtConnAccept()
Accept a connection to a peer device with the given address using a given advertising set.

Syntax:

void AppExtConnAccept(uint8_t advHandle, uint8_t advType, uint8_t addrType,
uint8_t *pAddr)

Where:

e advHandle: Advertising handle.
e advType: Advertising type.

e addrType: Address type.

e pAddr: Peer device address.

Copyright © 2011-2016 ARM. All rights reserved. Page 25

Confidential

App Framework API

3.6.8 AppMasterSecurityReq()

Initiate security as a master device. If there is a stored encryption key for the peer device this function
will initiate encryption, otherwise it will initiate pairing.

Syntax:

void AppMasterSecurityReq(dmConnId_t connId)
Where:

e connId: Connection identifier. See Device Manager API Reference Manual.
3.7 Discovery Functions

3.7.1 AppDisclnit()
Initialize app framework discovery.

Syntax:
void AppDiscInit(void)

This function is generally called once during system initialization before any other App Framework
API functions are called.

3.7.2 AppDiscRegister()
Register a callback function to service discovery status.

Syntax:
void AppDiscRegister(appDiscCback_t cback)

Where:
e cbhack: Application service discovery callback function.

3.7.3 AppDiscSetHdIList()
Set the discovery cached handle list for a given connection.

Syntax:

void AppDiscSetHdTList(dmConnId_t connId, uint8_t hdlListlLen, uintl6_t
*pHdTList)

Where:

e connId: Connection identifier. See Device Manager APl Reference Manual.
e TlistLen: Length of characteristic and handle lists.
e pHd1List: Characteristic handle list.

3.7.4 AppDiscComplete()

Syntax:

Copyright © 2011-2016 ARM. All rights reserved. Page 26

Confidential

App Framework API

void AppDiscComplete(dmConnId_t connId, uint8_t status)

Where:

e connId: Connection identifier. See Device Manager API Reference Manual.
e status: Service or configuration status. See 3.1.3.

3.7.5 AppDiscFindService()
Perform service and characteristic discovery for a given service.

Syntax:

void AppDiscFindService(dmConnId_t connId, uint8_t uuidLen, uint8_t *pUuid,
uint8_t TistLen, attcDiscChar_t **pCharList, uintl6_t *pHdTList)

Where:

e connId: Connection identifier.

e uuidLen: Length of service UUID (2 or 16).

e pUuid: Pointer to service UUID.

e TistLen: Length of characteristic and handle lists.
e pCharList: Characterisic list for discovery.

e pHd1List: Characteristic handle list.

Parameter pUuid points to the UUID of the service to discover. Parameter pCharL1ist contains the list
of characteristics and descriptors to discover. Parameter pHd1L1ist points to memory allocated by the
application for storing the handles of discovered characteristics and descriptors. Handles are stored at
the same index in pHd1L1ist as the index of their respective characteristics in pCharList.

3.7.6 AppDiscConfigure()
Configure characteristics for discovered services.

Syntax:

void AppDiscConfigure(dmConnId_t connId, uint8_t status, uint8_t cfglListLen,
attcDiscCfg_t *pCfgList, uint8_t hdlListLen, uintl6_t *pHdlList)

Where:

e connId: Connection identifier.

e status: Setto APP_DISC_CFG_START if configuration is being performed after service
discovery or APP_DISC_CFG_CONN_START if configuration is being performed on
connection setup.

e cfglListLen: Length of characteristic configuration list.

e pCfglList: Characteristic configuration list.

e hdlListLen: Length of characteristic handle list.

e pHd1List: Characteristic handle list.

Parameter pCfgList points to a list of characteristic information used to read or write a set of

characteristics. Parameter pHd1L1ist contains the handles of the characteristics. Each entry in
pCfgList contains a handle index that maps to the position of the characteristic’s handle in pHd1L1ist.

Copyright © 2011-2016 ARM. All rights reserved. Page 27

Confidential

App Framework API

3.7.7 AppDiscServiceChanged()

Perform the GATT service changed procedure. This function is called when an indication is received
containing the GATT service changed characteristic. This function may initialize the discovery state
and initiate service discovery and configuration.

Syntax:
void AppDiscServiceChanged(attEvt_t *pMsg)
Where:
e pMsg: Pointer to ATT callback event message containing received indication.

3.7.8 AppDiscProcDmMsg()

Process discovery-related DM messages. This function should be called from the application's event
handler.

Syntax:
void AppDiscProcDmMsg(dmEvt_t *pMsg)
Where:
e pMsg: Pointer to DM callback event message. See Device Manager API Reference Manual.

3.7.9 AppDiscProcAttMsg()

Process discovery-related ATT messages. This function should be called from the application's event
handler.

Syntax:

void AppDiscProcDmMsg(dmEvt_t *pMsg)
Where:

e pMsg: Pointer to ATT callback event message. See Attribute Protocol API Reference Manual.
3.8 Message Processing Functions

3.8.1 AppSlaveProcDmMsg()

Process connection-related DM messages for a slave. This function should be called from the
application’s event handler.

Syntax:
void AppSlaveProcDmMsg(dmEvt_t *pMsg)

Where:

e pMsg: Pointer to DM callback event message. See Device Manager API Reference Manual.

3.8.2 AppSlaveSecProcDmMsg()

Process security-related DM messages for a slave. This function should be called from the
application’s event handler.

Copyright © 2011-2016 ARM. All rights reserved. Page 28

Confidential

App Framework API

Syntax:
void AppSTlaveSecProcDmMsg(dmEvt_t *pMsg)

Where:
e pMsg: Pointer to DM callback event message. See Device Manager API Reference Manual.

3.8.3 AppMasterProcDmMsg()

Process connection-related DM messages for a master. This function should be called from the
application’s event handler.

Syntax:
void AppMasterProcDmMsg(dmEvt_t *pMsg)
Where:
e pMsg: Pointer to DM callback event message. See Device Manager API Reference Manual.

3.8.4 AppMasterSecProcDmMsg()

Process security-related DM messages for a master. This function should be called from the
application’s event handler.

Syntax:
void AppMasterSecProcDmMsg(dmEvt_t *pMsg)
Where:
e pMsg: Pointer to DM callback event message. See Device Manager API Reference Manual.

3.8.5 AppServerConnCback()

ATT connection callback for app framework. This function is used when the application is operating
as an ATT server and it uses notifications or indications. This function can be called by the
application's ATT connection callback or it can be installed as the ATT connection callback.

Syntax:
void AppMasterSecProcDmMsg(dmEvt_t *pMsg)
Where:

e pDmEvt: Pointer to DM callback event message. See Device Manager API Reference Manual].

3.9 Callback Interface

3.9.1 (*appDiscCback_t)()
Service discovery and configuration callback.

Syntax:
void (*appDiscCback_t) (dnConnId_t connId, uint8_t status)

Where:

Copyright © 2011-2016 ARM. All rights reserved. Page 29

Confidential

App Framework API

e connId: Connection identifier. See Device Manager API Reference Manual.
e status: Service or configuration status.

4 DB Interface

The DB interface provides an abstracted device database for storing bonding data and other device
parameters. The DB interface is used internally by the App Framework t manage bonding data and
client characteristic configuration descriptors. The interface can also be used by the application.

4.1 Constants and Data Types

4.1.1 appDbHdI_t

Device database record handle type. Each record in the device database is accessed via a unique
handle.

4.1.2 APP_DB_HDL_NONE

No device database record handle. This special value for the record handle is typically used to indicate
an error or that no record was found.

4.2 Functions

4.2.1 AppDblnit()
Initialize the device database. This function is typically called once at system startup.

4.2.2 AppDbNewRecord()
Create a new device database record. This function is typically called when bonding begins.

Syntax:
appDbHd1_t AppDbNewRecord(uint8_t addrType, uint8_t *pAddr))

Where:

e addrType: Addresstype. See Device Manager API Reference Manual.
e pAddr: Peer device address.

This function returns the database record handle of the new record.
The function returns the database record handle.

4.2.3 AppDbDeleteRecord()

Delete a new device database record. This function is called if bonding fails or if the application
desired to remove a bond.

Syntax:
void AppDbDeleteRecord(appDbHd1_t hd1)

Where:

e hd1: Database record handle.

Copyright © 2011-2016 ARM. All rights reserved. Page 30

Confidential

App Framework API

4.2.4 AppDbValidateRecord()

Validate a new device database record. This function is called when pairing is successful and the
devices are bonded.

Syntax:
void AppDbValidateRecord(appDbHd1_t hd1, uint8_t keyMask)

Where:

e hd1: Database record handle.
o keyMask: Bitmask of keys to validate.

4.2.5 AppDbCheckValidRecord()

Check if a record has been validated. If it has not, delete it. This function is typically called when the
connection is closed.

Syntax:

void AppDbCheckValidRecord(appDbHdT_t hd1))
Where:

e hd1: Database record handle.

4.2.6 AppDbCheckBonded()
Check if there is a stored bond with any device.

Syntax:
bool_t AppDbCheckBonded(void)
This function returns TRUE if a bonded device is found, FALSE otherwise.

4.2.7 AppDbDeleteAllRecords()
Delete all database records.

Syntax:
void AppDbDeleteAl1Records((void)

4.2.8 AppDbFindByAddr()
Find a device database record by peer address.

Syntax:
appDbHd1_t AppDbFindByAddr(uint8_t addrType, uint8_t *pAddr)

Where:

e addrType: Addresstype. See Device Manager APl Reference Manual.
e pAddr: Peer device address.

This function returns the database record handle or APP_DB HDL_NONE if not found.

Copyright © 2011-2016 ARM. All rights reserved. Page 31

Confidential

App Framework API

4.2.9 AppDbFindByLtkReq()

Find a device database record from data in an LTK request. The App Framework calls this function
when operating as a slave device and the master requests to enable encryption with the LTK.

Syntax:

appDbHd1_t AppDbFindByLtkReq(uintl6_t encDiversifier, uint8_t *pRandNum)
Where:
This function returns the database record handle or APP_DB_HDL_NONE if not found.

4.2.10 AppDbGetHdl()
Get the device database record handle associated with an open connection.

Syntax:
appDbHd1_t AppDbGetHd1 (dmConnId_t connld)

Where:

e connId: Connection identifier. See Device Manager API Reference Manual.
This function returns the database record handle or APP_DB_HDL_NONE.

4.2.11 *AppDbGetKey()

Get a key from a device database record. The App Framework calls this function to retrieve the LTK
when encryption is enabled.

Syntax:
dmSecKey_t *AppDbGetKey(appDbHdT_t hdl, uint8_t type, uint8_t *pSeclLevel)

Where:

e hd1: Database record handle.

e type: Type of key to get. See Device Manager API Reference Manual.

e pSeclLevel: If the key is valid, returns the security level of the key. See Device Manager API
Reference Manual.

This function returns a pointer to the key if the key is valid or NULL if not valid.

4.2.12 AppDbSetKey()

Set a key in a device database record. The App Framework calls this function to store a key received
during pairing.

Syntax:
void AppDbSetKey(appDbHdT_t hdl, dmSecKeyIndEvt_t *pKey)

Where:

e hd1: Database record handle.
e pKey: Key data. See Device Manager API Reference Manual.

Copyright © 2011-2016 ARM. All rights reserved. Page 32

Confidential

App Framework API

4.2.13 *AppDbGetCccTbl()

Get the client characteristic configuration descriptor table. This table contains a peer device’s stored
settings for indications and notifications.

Syntax:
uintle_t *AppDbGetCccTb1(appDbHdT_t hd1)
Where:
e hd1: Database record handle.
This function returns a pointer to client characteristic configuration descriptor table.

4.2.14 AppDbSetCccTblValue()

Set a value in the client characteristic configuration table. This function is typically called from the
application’s ATT client characteristic configuration callback to store a new value when it is written by
the peer device.

Syntax:
void AppDbSetCccTb1Value(appDbHd1_t hd1, uintl6_t idx, uintl6_t value)

Where:

e hd1: Database record handle.

e idx: Table index. See Attribute Protocol API Reference Manual.

e value: Client characteristic configuration value. See Attribute Protocol APl Reference
Manual.

4.2.15 AppDbGetDiscStatus()
Get the discovery status.

Syntax:

uint8_t AppDbGetDiscStatus(appDbHd1_t hd1)
Where:

e hd1: Database record handle.
This function returns the discovery status.

4.2.16 AppDbSetDiscStatus()
Set the discovery status.

Syntax:
void AppDbSetDiscStatus(appDbHdT_t hdl, uint8_t status)

Where:

e hd1: Database record handle.
e status: The discovery status. See 3.1.3.

Copyright © 2011-2016 ARM. All rights reserved. Page 33

Confidential

4.2.17 AppDbGetHdIList()
Get the cached handle list.

Syntax:
uintlée_t *AppDbGetHd1List(appDbHd1_t hdl1)

Where:
e hd1: Database record handle.
This function returns a pointer to the handle list.

4.2.18 AppDbSetHdIList()
Set the discovery status.

Syntax:
void AppDbSetHd1List(appDbHd1_t hdl, uintl6_t *pHdIList)

Where:

e hd1: Database record handle.
e pHdT1List: Pointer to handle list.

4.2.19 *AppDbGetDevName()
Get the device name.

Syntax:
char *AppDbGetDevName(uint8_t *plLen)

Where:

e plLen: Returned device name length.

Returns a pointer to a UTF-8 string containing the device name or NULL if not set.

4.2.20 AppDbSetDevName()
Set the device name.

Syntax:
void AppDbSetDevName(uint8_t len, char *pStr)

Where:

e len: Device name length.
e pStr: UTF-8 string containing the device name.

5 Ul Interface

App Framework API

The Ul interface provides the application with simple user interface abstractions for button press

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

Page 34

App Framework API

handling, sounds, display, and other user feedback.

5.1 Constants and Data Types

5.1.1 Ul event enumeration
The following Ul event enumeration values are used by function AppUiAction().

Table 17 Ul event enumeration

Name Description

APP_UI_NONE No event.

APP_UI_RESET_CMPL Reset complete.
APP_UI_DISCOVERABLE Enter discoverable mode.
APP_UI_ADV_START Advertising started.
APP_UI_ADV_STOP Advertising stopped.
APP_UI_SCAN_START Scanning started.
APP_UI_SCAN_STOP Scanning stopped.
APP_UI_SCAN_REPORT Scan data received from peer device.
APP_UI_CONN_OPEN Connection opened.
APP_UI_CONN_CLOSE Connection closed.
APP_UI_SEC_PAIR_CMPL Pairing completed successfully.
APP_UI_SEC_PAIR_FAIL Pairing failed or other security failure.
APP_UI_SEC_ENCRYPT Connection encrypted.
APP_UI_SEC_ENCRYPT_FAIL Encryption failed.
APP_UI_PASSKEY_PROMPT Prompt user to enter passkey.
APP_UI_ALERT_CANCEL Cancel a low or high alert.
APP_UI_ALERT_LOW Low alert.

APP_UI_ALERT_HIGH High alert.

5.1.2 Button press enumeration
Button press enumeration.

Copyright © 2011-2016 ARM. All rights reserved. Page 35

Confidential

App Framework API

Table 18 Button press enumeration

Name

Description

APP_UI_BTN_NONE

No button press.

APP_UI_BTN_1_DOWN

Button 1 down press.

APP_UI_BTN_1_SHORT

Button 1 short press.

APP_UI_BTN_1_MED

Button 1 medium press.

APP_UI_BTN_1_LONG

Button 1 long press.

APP_UI_BTN_1_EX_LONG

Button 1 extra long press.

APP_UI_BTN_2_DOWN

Button 2 down press.

APP_UI_BTN_2_SHORT

Button 2 short press.

APP_UI_BTN_2_MED

Button 2 medium press.

APP_UI_BTN_2_LONG

Button 2 long press.

APP_UI_BTN_2_EX_LONG

Button 2 extra long press.

5.1.3 LED values
LED values.

Table 19 LED values
Name Description
APP_UI_LED_NONE No LED.
APP_UI_LED_1 LED 1.
APP_UI_LED_2 LED 2.
APP_UI_LED_3 LED 3.
APP_UI_LED_4 LED 4.

APP_UI_LED_WRAP

Wrap to beginning of sequence.

5.1.4 Sound tone values
Sound tone values.

Copyright © 2011-2016 ARM. All rights reserved. Page 36

Confidential

App Framework API

Table 20 Sound tone Vvalues

Name Description

APP_UI_SOUND_WRAP Sound tone value for wrap/repeat.

5.1.5 appUiSound _t
This structure is used to create sounds played by function AppUiSoundPlay().

Table 21 appUiSound_t

Type Name Description
uintl6_t tone Sound tone in Hz. Use 0 for silence.
uintl6_t duration Sound duration in milliseconds.

516 appUilLed_ t
This structure is used to create LED flash patterns used with function AppUiLedStart().

Table 22 appUiLed _t

Type Name Description

uint8_t Ted LED to control.

uint8_t state On or off.

uintl6_t duration Duration in milliseconds.

5.2 Functions

5.2.1 AppUiAction()

Perform a user interface action based on the event value passed to the function. The implementation of
this function will perform a particular action, such as playing a sound or blinking an LED.

Syntax:
void AppUiAction(uint8_t event)

Where:

e event: User interface event value. See 5.1.1.

5.2.2 AppUiDisplayPasskey()

Display a passkey. This function is only applicable to devices that can display the six-digit numeric
passkey value.

Syntax:

Copyright © 2011-2016 ARM. All rights reserved. Page 37

Confidential

App Framework API

void AppUiDisplayPasskey(uint32_t passkey)
Where:
e passkey: Passkey to display.

5.2.3 AppUiDisplayRssi()
Display an RSSI value. This function is only applicable to devices that can be in a connection.

Syntax:

void AppUiDisplayRssi(int8_t rssi)
Where:

e rssi: RSSI value to display.

5.2.4 AppUiBtnRegister()
Register a callback function to receive button presses.

Syntax:

void AppUiBtnRegister(appUiBtnCback_t cback)
Where:

e cback: Application button callback function.

5.2.5 AppUiSoundPlay()
Play a sound.

Syntax:

void AppUiSoundPTlay(const appUiSound_t *pSound)
Where:

e pSound: Pointer to sound tone/duration array. See 5.1.3.

5.2.6 AppUiSoundStop()
Stop the sound that is currently playing.

Syntax:
void AppUiSoundStop(void)

5.2.7 AppUiLedStart()
Start LED blinking.

Syntax:
void AppUilLedStart(const appUilLed_t *plLed)

Where:

Copyright © 2011-2016 ARM. All rights reserved. Page 38

Confidential

App Framework API

e plLed: Pointer to LED data structure. See 5.1.6.

5.2.8 AppUilLedStop()
Stop LED blinking.

Syntax:
void AppUilLedStop(void)
5.3 Callback Interface

5.3.1 (*appUiBtnCback_t)()
This callback function sends button events to the application.

Syntax:
void (*appUiBtnCback_t) (uint8_t btn)

Where:

e btn: Button press event. See 5.1.2.

6 HW Interface

The HW interface provides an abstraction layer for hardware sensors.
6.1 Constants and Data Types

6.1.1 appHrm_t
Heart rate measurement structure.

Table 23 appHrm_t

Type Name Description

uintlé_t *pRrInterval Array of RR intervals.
uint8_t numIntervals Length of RR interval array.
uintlé_t energyExp Energy expended value.
uint8_t heartRate Heart rate.

uint8_t flags Heart rate measurement flags.

6.1.2 appDateTime_t
Date and time structure.

Copyright © 2011-2016 ARM. All rights reserved. Page 39

Confidential

App Framework API

Table 24 appDateTime_t

Type Name Description
uintl6_t year Year.
uint8_t month Month.
uint8_t day Day.
uint8_t hour Hour.
uint8_t min Minutes.
uint8_t sec Seconds.
6.1.3 appBpm_t
Blood pressure measurement structure.
Table 25 appBpm _t
Type Name Description
appDateTime_t timestamp Date-time.
uintlé_t systolic Systolic pressure.
uintlé_t diastolic Diastolic pressure.
uintlé_t map Mean arterial pressure.
uintle_t pulseRate Pulse rate.
uintlé_t measStatus Measurement status.
uint8_t flags Flags.
uint8_t userId User ID.
6.1.4 appWsm_t
Weight scale measurement structure.
Table 26 appWsm_t
Type Name Description
appDateTime_t timestamp Date-time.
uint32_t weight Weight.
uint8_t flags Weight measurement flags.

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

Page 40

App Framework API

6.1.5 appTm_t
Temperature measurement structure.

Table 27 appTm_t

Type Name Description
appDateTime_t timestamp Date-time.
uint32_t temperature Temperature.
uint8_t flags Flags.

uint8_t tempType Temperature type.

6.1.6 appPIxCm_t
Pulse oximeter continuous measurement structure.

Table 28 appTm_t

Type Name Description

uint8_t flags Flags

uintlé_t spo2 SpO2PR-Spot-Check - SpO2
uintlée_t pulseRate SpO2PR-Spot-Check - Pulse Rate
uintl6_t spo2Fast SpO2PR-Spot-Check Fast - SpO2
uintlé_t pulseRateFast SpO2PR-Spot-Check Fast - Pulse Rate
uintlé6_t spo2STow SpO2PR-Spot-Check Slow - SpO2
uintlée_t pulseRateSTow SpO2PR-Spot-Check Slow - Pulse Rate
uintlé_t measStatus Measurement Status

uint32_t sensorStatus Device and Sensor Status

uintl6_t pulseAmpIndex Pulse Amplitude Index

6.1.7 appPIxScm_t
Pulse oximeter spot check measurement structure.

Table 29 appTm_t

Type Name Description
uint8_t flags Flags
uintl6_t spo2 SpO2PR-Spot-Check - SpO2
Copyright © 2011-2016 ARM. All rights reserved. Page 41

Confidential

App Framework API

uintl6_t pulseRate SpO2PR-Spot-Check - Pulse Rate
appDateTime_t timestamp Timestamp

uintlée_t measStatus Measurement Status

uint32_t sensorStatus Device and Sensor Status
uintleé_t pulseAmpIndex Pulse Amplitude Index

uint8_t flags Flags

6.2 Functions

6.2.1 AppHwBattRead()

Read the battery level. The battery level value returned in pLevel is the percentage of remaining

battery capacity (0-100%).
Syntax:

void AppHwBattRead(uint8_t *plLevel)
Where:

e plevel: Battery level return value.

6.2.2 AppHwHrmRead()
Perform a heart rate measurement.

Syntax:

void AppHwHrmRead(appHrm_t *pHrm)
Where:

e pHrm: Heart rate measurement return value.
Return the heart rate along with any RR interval data.

6.2.3 AppHwBpmRead()
Perform a blood pressure measurement.

Syntax:
void AppHwBpmRead(bool_t intermed, appBpm_t *pBpm)

Where:

e intermed: TRUE if this is an intermediate measurement.
e pBpm: Blood pressure measurement return value.

Return the measurement data.

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

Page 42

6.2.4 AppHwWsmRead()
Perform a weight scale measurement.

Syntax:

void AppHwWsmRead(appWsm_t *pWsm)
Where:

e pwsm: Weight scale measurement return value.
Return the measurement data.

6.2.5 AppHwTmRead()
Perform a temperature measurement.

Syntax:
void AppHwTmRead(bool_t intermed, appWsm_t *pWsm)

Where:

e intermed: TRUE if this is an intermediate measurement.

e pTm: Temperature measurement return value.
Return the measurement data.

6.2.6 AppHwTmSetUnits ()
Set the temperature measurement units.

Syntax:
void AppHwTmSetUnits (uint8_t units)

Where:

e units: CH_TM_FLAG_UNITS_C or CH_TM_FLAG_UNITS_F.

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

App Framework API

Page 43

6.2.7 AppHwPIxcmRead()
Perform a pulse oximeter continuous measurement.

Syntax:

void AppHwP1xcmRead(appPT1xCm_t *pPTxcm)
Where:

e pPlxcm: Pulse oximeter measurement return value.
Return the measurement data.

6.2.8 AppHwPIxscmRead()
Perform a pulse oximeter spot check measurement.

Syntax:
void AppHwP1xscmRead(appP1xScm_t *pPlxscm)

Where:

e pPlxscm: Pulse oximeter measurement return value.

Return the measurement data.

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

App Framework API

Page 44

