

OTA Example Project

User’s Guide

Date Revision History Reviser
2016-12-20 V0.1 draft created Renton Ma
2016-12-30 V0.2 added ota profile and app descriptions. Renton Ma
2017-1-12 V0.3 add storage type definition Mike Li
2017-2-17 V0.4 added Apollo2 support description Renton Ma
2017-3-24 V0.5 updated according to setting changes Renton Ma
2017-5-5 V1.0 created for AmbiqSuite SDK Rel 1.2.8 David Munsinger
2017-11-27 V1.1 created for AmbiqSuite SDK Rel 1.2.11 Zhongyi Chen

Table of Contents
OTA Example Project ... 1

1. Introduction .. 3
2. System Description ... 4

2.1 Features ... 4
2.2 System Architecture and operation flow ... 5
2.3 MCU Memory Map .. 6
2.4 Bootloader and Flash Flag Page ... 7
2.5 AMOTA Service .. 10

3. Getting Started .. 16
3.1 Folder directory ... 16
3.2 Development Environment ... 16
3.3 Run the example .. 18

4. Characteristics .. 24
4.1 For APOLLO MCU ... 24
4.2 For APOLLO2 MCU .. 24

FIGURE 1 SYSTEM ARCHITECTURE AND OPERATION FLOW ... 5

FIGURE 2 MCU MEMORY MAP ... 6

FIGURE 3 BOOT SEQUENCE .. 8

FIGURE 4 OTA SERVICE FLOW ... 15

FIGURE 5 FOLDER STRUCTURE .. 16

FIGURE 6 AM FLASH SCREENSHOT .. 19

1. Introduction
This document describes the firmware Over-The-Air (OTA) update example using BLE 4.2 for
APOLLO1 and APOLLO2 series MCUs as well as the firmware running inside of the HCI
controller. The example project consists of the following parts to complete the function:
- Program running on the APOLLO/APOLLO2 series MCUs.

- AMOTA Application (freertos_amota)
- Bootloader (exactle_fit_amota_multi_boot)
- OTA BLE Service (amota)
- BLE stack (ARM Cordio BTLE Stack)

- Firmware running on BLE HCI controller device (EM9304)
- Smartphone APP on iOS or Android system. (OTA Demo)
- Makefile to generate binary files for APP to load.

The purpose of the example is to provide a reference for firmware update of the MCU and the
HCI controller over BLE communication while the application is still running. Data transfer is in
background operation of the application and can be paused and resumed during the
progress. Data being transferred is verified by each communication package as well as a
whole image once the transfer is complete. Data received can be stored either inside the
empty area of the internal flash (if there is enough space left in the internal flash of the MCU)
or into the external serial flash. After the complete image is received and stored correctly, the
system will keep operating from the existing firmware until a system reset is triggered. The
new image will be loaded into the target internal flash by the bootloader after a system reset,
and executed automatically if checked available.

1 Note: Apollo1 support will be provided as soon as EM9304 device is supported with the

apollo1_evb.

2. System Description
This section of the document describes the system of the OTA example project in
general.
The example is developed, compiled and tested with Keil ARM compiler V5.17 and and
Eclipse Mars 1 Release.

2.1 Features
- Functions during OTA

- Robust to communication disturbances.
Continue update progress after re-connection.

- Side-by-side firmware update.
The system update progress is executed while application is running, providing a
“silent update” experience to the end user.

- Proprietary OTA service on top of BLE stack.
- RF IC always works in HCI controller mode and does not require image switching.

- High speed communication
- Firmware data transfer at a speed of > 3KB / sec with iOS and Android.

(Target version: iOS 10 and Android 6.0)
- Error handling

- CRC checking is applied to each data packet received as well as to the whole image
after the completion of the data transfer.

- Packet will be requested to be re-transmitted by the central device (smartphone) if
there is error happened during the communication.

- Firmware version information is transmitted and stored.
- Image storage

- Image can be selected to be stored either in internal flash or external storage,
enabling larger image size to be updated.

- Update of the BLE stack itself
- Since the image is transferred as one entity containing the BLE stack as well as the

OTA service itself, this OTA update flow allows user to update the BLE stack as well
as the OTA service to be updated.

- Encrypted image data (extended feature)
- Image being transferred and stored can be encrypted and decrypted during the boot

process.
- Data type can be specified (extended feature)

- Type of the data being transferred and stored can be specified as application
firmware or plain data providing the possibility to update only the data arrays inside
the firmware without updating the rest of the code.

(Extended features are not included in version 1.0 of the example project.)

2.2 System Architecture and operation flow
A high-level system architecture and operation flow is illustrated in the diagram below:

FIGURE 1 SYSTEM ARCHITECTURE AND OPERATION FLOW

The BLE stack used in this example is the ARM Cordio BTLE stack (a.k.a Wicentric BLE
Stack, or exactLE Stack) software version 2.1. The upper layers (above and including
HCI host layer) of the stack is running on the APOLLO/APOLLO2 series MCUs as a part
of the application firmware. This leaves the BTLE module working as a standard HCI
controller. This architecture utilizes the ultra-low operating power feature of the
APOLLO/APOLLO2 series MCUs for the BLE communication as much as possible to
further reduce overall system power consumption, as well as providing a flexibility of
choosing the external RF controller.
As the application firmware gets boots up, the lower level software driver will send the
standard HCI controller image to the RF controller, and the BLE communication can be
started once HCI controller and the stack are initialized.
Since the stack and the HCI controller static image are parts of the application firmware,
they can be updated during the OTA progress.
For further information on the ARM Cordio BTLE stack, please refer to the documents
located in the directory of ..\AmbiqMicro\AmbiqSuite\third_party\exactle\docs\pdf .

The example starts to broadcast with standard services (heart rate, device information
and battery) once loaded. When a central device connects to the example device,
AMOTA service can be discovered, and data transfer can be triggered according to the
pre-defined meta data description. For more information of the AMOTA service, please
refer to 2.5 AMOTA Service of this document.

During data transfer, application code can keep running. This example uses a binary
counter that turns on and off the LED arrays on the APOLLO/APOLLO2 series MCUs
EVB to indicate the operating status of the application code. Data received is stored into
internal flash or external serial flash according to the user specification.

Once the data transfer is completed, the AMOTA service will update the flash flag page
located at a fixed memory address (default: 0x3C00 for APOLLO MCU and 0x4000 for
APOLLO2 MCU) to mark a valid new image is available for the bootloader to load. User
can make the choice of whether to trigger a POI reset to the MCU or keep running the old
application code.
After a system reset, bootloader checks the flash flag page information and loads the
available new image into the target memory address. Once verification passes, the new
image gets executed from the bootloader. For details about bootloader, please check
section 2.4 Bootloader.

2.3 MCU Memory Map
The MCU memory map is shown in the figure below:

FIGURE 2 APOLLO MCU MEMORY MAP

FIGURE 3 APOLLO2 MCU MEMORY MAP

Taking APOLLO as example, the first 16K bytes of the internal flash is mapped to the
bootloader (15K bytes) and flash flag page (1K bytes). By default, flash flag page is fixed
starting from 0x3C00. Application firmware can be mapped right after the flash flag page
starting from 0x4000 (default), or any other address above. Application firmware
boundary is the end of the application code aligned with the internal flash page size
(which is 2048 bytes for APOLLO MCU). If the data received is to be stored inside the
internal flash, user has to ensure that the space left inside the internal flash starting from
the application firmware boundary is sufficient to hold the data. If not, it is recommended
to store the data received inside the external storage device.
Checking the space left inside the internal flash is done by API provided along with the
example project.
For above mentioned memory mapping, with APOLLO2 MCU, the addresses are different
due to the size of the flash page on APOLLO2 is 8K bytes. For APOLLO2, the default
flash flag page starting address is mapped to 0x6000, and the application load starting
address is mapped to 0x8000.

2.4 Bootloader and Flash Flag Page
2.4.1 Bootloader

Bootloader of this example is built based on multi_boot example of the SDK. For more
information of multi_boot, please check MultiProtocolBootloader.pdf in the folder of ..
\AmbiqMicro\AmbiqSuite\docs\app_notes\bootloader.

This section only describes the modification made on multi_boot as well as the extended
flash flag page settings.
The modified boot sequence is shown in the figure below:

FIGURE 4 BOOT SEQUENCE

After checking the override pin, the bootloader checks the ui32Options flag stored in flash
flag page (address offset 0x1C) to determine whether there is a new image stored in
internal or external flash. If there is, the bootloader will first check the availability of the
stored image by calculate and compare the CRC of the stored data with the CRC inside
the flash flag page (ui32CRC, address offset 0x08), and load the image into the target link
address (pui32LinkAddress, address offset 0x00) if the image is valid.

Storage type of the new image is specified by user when generating the OTA binary file.
The smartphone APP is also able to set the target storage option.

Bootloader is a standalone project besides the application.
It is located at ..\Ambiqsuite\boards\apollo_evk_base\examples\multi_boot.

2.4.2 Flash Flag Page
This example project utilizes a modified flash flag page data structure which is shown in
the table below:

TABLE 1 FLASH FLAG PAGE

The flash flag page is by default located at 0x3C00 (0x4000 for APOLLO2) of the internal
flash, however it is possible for user to specify the start address of the flash flag page to the
last page in the internal flash. E.g. 0x7F800 for a device with 512KB internal flash. This can
be done by setting the following macro to 1.

The macro is located at line 46
of ..\AmbiqSuite\\boards\apollo_evk_base\examples\multi_boot\src\multi_boot_config.h.
After changing to this setting is made, both multi_boot and freertos_amota projects have to be
re-built to work with the new setting.

Note: Using the last page of flash as the flash flag page will significantly increase the binary
file size of the “combined” binary (boot + application + flash flag page information), due to the
gap between the end of the application firmware and the flash flag page is filled with 0xFF in
the binary file generated.

Symbol Length
(bytes)

Address
Offset

Description

pui32LinkAddress 4 0x00
Starting address where the image was linked to run.
This value shall not be small than 0x4000.

ui32NumBytes 4 0x04 Length of the executable image in bytes.
ui32CRC 4 0x08 CRC-32 Value for the full image.

ui32OverrideGPIO 4 0x0C
Override GPIO number.
Can be used to force a new image load.

ui32OverridePolarity 4 0x10

Active polarity for the override pin.
0: Logic low; 1: Logic high
If the selected GPIO input value matches active polarity, bootloader is forced
to load new image from external host via serial communication.

pui32StackPointer 4 0x14
Stack pointer location.
This value shall not be small than starting address of the internal SRAM.

pui32ResetVector 4 0x18
Reset vector location.
This value shall not be smaller than pui32LinkAddress.

ui32Options 4 0x1C

Boot Options.
0x01: New image available in internal flash.
0x02: New image available in external flash.
Other: No new image available.

ui32Version 4 0x20 Version Informatin of the Current Image
ui32VersionNewImage 4 0x24 Version Informatin of the New Image. (Not used in this example.)
pui32StorageAddressNewImage 4 0x28 Starting address where the new image was stored.
ui32TotalNumBytesNewImage 4 0x2C Length of the new image being received in bytes. (Not used in this example.)
ui32StoredNumBytesNewImage 4 0x30 Bytes already received and stored. (Not used in this example.)
ui32CRCNewImage 4 0x34 CRC-32 Value for the new image being received. (Not used in this example.)

bEncrypted 4 0x38

Use to determine whether the image is encrypted.
0: image is not encrypted.
1: image is encrypted.

2.5 AMOTA Service
The following section describes the AMOTA service that is implemented in this example to
perform the key function of the OTA process.

2.5.1 Service Declaration
The service UUID of Ambiq Micro OTA (AMOTA) service is defined as below:

00002760-08C2-11E1-9073-0E8AC72E1001.
Note:

Base UUID of Bluetooth SIG is 00000000-0000-1000-8000-00805F9B34FB.
All customized 128-bit UUIS should be less than base UUID.

2.5.2 Service Characteristics Definitions

Rx: 00002760-08C2-11E1-9073-0E8AC72E0001
Tx: 00002760-08C2-11E1-9073-0E8AC72E0002

Characteristic Requirements
Mandatory
Properties

Security
Permissions

Description

Characteristic Rx M Write None Data from client

Characteristic Rx User
Description

N Read None
Value read by
client

Characteristic Tx M Notify None
Value
notification to
client

Characteristic Tx
Client Characteristic
Configuration
descriptor

M Read None
Value
notification
configuration

TABLE 2 CHARACTERISTICS

2.5.3 Characteristics
The following characteristics are defined in the AM OTA Service. Only one instance of each
characteristic is permitted within this service.

Characteristic Name Mandatory Properties Security Permission
Received data
Characteristic

Write Command None

Send data Characteristic Notify None
Characteristic Descriptors:
Characteristic User Description
This characteristic descriptor defines the AM OTA version with read permission property.

Client Characteristic Configuration Descriptor:
The notification characteristic will start to notify if the value of the CCCD (Client
Characteristic Configuration Descriptor) is set to 0x0001 by client. The send data
characteristic will stop notifying if the value of the CCCD is set to 0x0000 by client.

2.5.4 Service Behaviors

1. OTA client sends firmware header/meta info to server by amota packet format
2. Server replies with received byte counters
3. OTA client starts to send firmware data by amota packet format
4. Server replies with received byte counters
5. OTA client sends verify command to ask server to calculate the whole firmware

checksum
6. Server replies checksum result to client
7. Client sends reset command to server (APP behavior)
8. Server sends reset command response to server before reset (APP behavior)

AMOTA packet format
Length: two bytes (data + checksum)
Cmd: 1 byte
Data: 0 ~ 512 bytes
Checksum: 4 bytes

Length Command Data Checksum
Two bytes 1 byte 0 ~ 512 bytes 4 bytes

Commands:
/* amota commands */
typedef enum
{
 AMOTA_CMD_UNKNOWN,
 AMOTA_CMD_FW_HEADER,
 AMOTA_CMD_FW_DATA,
 AMOTA_CMD_FW_VERIFY,
 AMOTA_CMD_FW_RESET,
 AMOTA_CMD_MAX
}eAmotaCommand;

FW Header Info
Amota packet header (two bytes length + 1 byte cmd)

amotaHeaderInfo_t
encrypted: 4 bytes
fwStartAddr: 4 bytes
fwLength: 4 bytes
fwCrc: 4 bytes
secInfoLen: 4 bytes
resvd1: 4 bytes
resvd2: 4 bytes
resvd3: 4 bytes
version: 4 bytes
fwDataType: 4 bytes
storageType: 4 bytes
resvd3: 4 bytes

Amota packet checksum (4 bytes)

FW Data Packet
Amota packet header (two bytes length + 1 byte cmd)
Data: 0 ~ 512 bytes
Amota packet checksum (4 bytes)

FW Verify Command
Amota packet header (two bytes length + 1 byte cmd)
Amota packet checksum (4 bytes)

Target Reset Command
Amota packet header (two bytes length + 1 byte cmd)
Amota packet checksum (4 bytes)

Command Response Format
Length: 2 bytes (data + status)
Cmd: 1 byte
Status: 1 byte
Data: 0 ~ 16 bytes

/* amota status */
typedef enum
{
 AMOTA_STATUS_SUCCESS,
 AMOTA_STATUS_CRC_ERROR,
 AMOTA_STATUS_INVALID_HEADER_INFO,
 AMOTA_STATUS_INVALID_PKT_LENGTH,
 AMOTA_STATUS_INSUFFICIENT_BUFFER,

AMOTA_STATUS_INSUFFICIENT_FLASH,
AMOTA_STATUS_UNKNOWN_ERROR,
AMOTA_STATUS_FLASH_WRITE_ERROR,

 AMOTA_STATUS_MAX
}eAmotaStatus;

FW Header Info Response & FW Data Response
Amota packet header (two bytes length + 1 byte cmd)
Status: 1 byte
Received packet counter: 4 bytes

FW Verify & Target Reset Response
Amota packet header (two bytes length + 1 byte cmd)
Status: 1 byte

FIGURE 5 OTA SERVICE FLOW

• Create services
svc_amotas.c
svc_amotas.h

• Profile and OTA logic implementation
amotas_main.c
amotas_api.h

• Initialize in application
Set AmotasCfg_t
Add AMOTAS_TX_CH_CCC_HDL in attsCccSet_t
Register callback in FitStart()

 SvcAmotasCbackRegister(NULL, amotas_write_cback);
Add service in FitStart()

SvcAmotasAddGroup();
 Call amotas_proc_msg() in fitProcMsg() for event DM_CONN_OPEN_IND
 Add amotas_start() and amotas_stop() in function fitProcCccState()

3. Getting Started
3.1 Folder directory

The example project comes with the following folder structure:

FIGURE 6 FOLDER STRUCTURE

3.2 Development Environment
- Hardware:

APOLLO2 OTA example project

folder

APOLLO2 Bootloader project

folder

This example runs on APOLLO+EM9304 shield board and APOLLO2-BLUE EVB, make
sure you have one available to run the example.
For details of the EVKs, please check ..\AmbiqMicro\AmbiqSuite\docs\boards\apollo_evk\
apollo_evk_users_guide.pdf.
Otherwise, modifications need to be done according to the hardware setup in the BSP of
both exactle_fit_amota_multi_boot and freertos_amota folders.

- Software:
Install the latest AmbiqSuite.

Install Python 3.x to run the helper scripts for OTA binary file generation and combination.
Install Keil MDK-ARM Plus Version 5.20 or later for code generation and debug.
iOS:

Install iTunes PC tool for iOS device APP installation and file sharing.
Visit our APP page on Apple AppStore at: https://itunes.apple.com/us/app/ambiq-
ota/id1190453962?mt=8

 Or simply search for “Ambiq OTA” in the AppStore to install.
Android:

 Install our Ambiq OTA app directly from the APK located at:
 ..\AmbiqMicro\AmbiqSuite\tools\amota

3.3 Run the example
Navigate to the /AmbiqSuite/tools/amota/scripts folder.

Run “make” in this folder:

Note: it will take a while to build all the required binaries for Apollo1 and Apollo2-Blue
EVB.

There are four final binaries generated from the above step:

1. starter_binary_apollo1.bin, which is used to load into Apollo1 based

board.

2. starter_binary_apollo2_blue.bin, which is used to load into Apollo2-

Blue EVB.

3. update_binary_apollo1.bin, which should be uploaded into smartphone

app to transfer it over the air to Apollo1 based EVB.

4. update_binary_apollo2_blue.bin, which should be uploaded into

smartphone app to transfer it over the air to Apollo2-BLUE EVB.

Load the starter_binary_apollo1.bin or starter_binary_apollo2_blue.bin into
the target MCU using the J-Link Flash as follows:

FIGURE 7 J-LINK FLASH LITE SCREENSHOT

Press the reset button to start the application.

1. iOS:
Install the iOS APP from Apple AppStore by searching for Ambiq OTA.
Once the APP is installed successfully, it will be shown on the home screen.

Android:
Install the APK from the ..\tools\amota folder. Once the APK is installed successfully,
it will be shown on the home screen.

2. Load the update_binary_apollo1.bin and update_binary_apollo2_blue.bin

into the APP.
iOS: Connect the smart phone with PC, start iTunes and load the binary file into OTA
APP. With iTunes:

Android: Enable the USB storage media device when the smart phone is connected
to PC and move the target binary file into any visible storage directory. E.g.
to ..\storage\emulated\0\Debug\ota_binary

3. Start OTA APP from smart phone and send the update_binary_apollo1.bin or

update_binary_apollo2_blue.bin via BLE.
With iOS

Scan and Select Cordio

Click to select

bin file

With Android:

Click to start and

stop scanning

Click to select a

new binary
Select our device

from the list.

Select the binary

from the target

directory

Select bin file

Click send to device
Click continue to confirm

Verify success, reset

the MCU

Summary of

OTA

Once reset command is sent to MCU, the MCU resets and enters bootloader, it will
take several seconds to load the new image into the flash.
After the new image is up and running, the LED array will blink the binary counter with
a sub pattern, which indicates the operation is successfully done.

Click on “start

ota” and

monitor the

Once the progress is done,

a reset will be triggered by

APP automatically

After the reset, the device will

start to run the new firmware, an

automatic re-connect can be

monitored in the APP.

4. Characteristics
4.1 For APOLLO MCU

 Item Typ. Unit Remark
Data Transfer speed
 Storage in internal flash 4.9 KB/s with iOS App V0.51
 Storage in external flash 4.8 KB/s with iOS App V0.51
Resource Consumption
 Bootloader code size 10.27 KB
 Bootloader RAM size 5.2 KB
 Flash flag page 1 KB 224 bytes
 OTA project code size 89.70 KB
 OTA project RAM size 7.27 KB 2KB stack
Execution Timing
 Boot from internal flash 1.98 sec 89.70KB image
 Boot from external flash 2.45 sec 89.70KB image@8MHz
 Flash write to internal flash 4.8 msec 512bytes
 Flash write to external flash 6.4 msec 256bytes @ 8MHz

4.2 For APOLLO2-BLUE MCU

 Item Typ. Unit Remark
Data Transfer speed
 Storage in internal flash 4.9 KB/s with iOS App V0.51
 Storage in external flash 3.4 KB/s with iOS App V0.51
Resource Consumption
 Bootloader code size 14.96 KB
 Bootloader RAM size 17.60 KB Buffer for 1 flash page
 Flash flag page 8 KB 224 bytes
 OTA project code size 89.85 KB
 OTA project RAM size 7.8 KB 2KB stack.
Execution Timing
 Boot from internal flash 0.624 sec 91.32KB image
 Boot from external flash 1.01 sec 91.32KB image@8MHz
 Flash write to internal flash 1.8 msec 512bytes
 Flash write to external flash 4.1 sec 256bytes@8MHz

