
Copyright  2015, 2016 ARM. All rights reserved.  Page 1 

Confidential 

ARM® Cordio WSF 

ARM-EPM-115975 1.0 

Software Foundation API 

Confidential 

 

 



WSF API 

Copyright  2015, 2016 ARM. All rights reserved.  Page 2 

Confidential 

ARM® Wireless Software Foundation API 

Reference Manual 
Copyright © 2015, 2016 ARM. All rights reserved. 

Release Information  
The following changes have been made to this book: 

Document History 

Date Issue Confidentiality Change 

25 September 2015 - Non-Confidential First Wicentric release for 1.3 as 2009-0003.  

1 March 2016 A Confidential Draft First ARM release for 1.3.  

24 August 2016 A Confidential AUSPEX # 

Proprietary Notice 
This document is protected by copyright and other related rights and the practice or implementation of the information contained in this 

document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any 

form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to 

any intellectual property rights is granted by this document unless specifically stated. 

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the 

information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology 

or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or 

creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for 

publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this 

document with any other products created by you or a third party, without obtaining ARM’s prior written consent. 

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, 

IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, 

SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE 

DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or 

understand the scope and content of, third party patents, copyrights, trade secrets, or other rights. 

This document may include technical inaccuracies or typographical errors. 

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING 

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, 

HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS 

DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this 

document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, 

directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to 

create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without 

notice. 

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this 

document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This 

document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version 

of this document and any translation, the terms of the English version of the Agreement shall prevail. 

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or 

elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. 

Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php 

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”. 

Copyright © 2015, 2016, ARM Limited or its affiliates. All rights reserved. 

ARM Limited. Company 02557590 registered in England. 



WSF API 

Copyright  2015, 2016 ARM. All rights reserved.  Page 3 

Confidential 

110 Fulbourn Road, Cambridge, England CB1 9NJ. 

LES-PRE-20348 

Confidentiality Status 
This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with 

the terms of the agreement entered into by ARM and the party that ARM delivered this document to. 

Product Status 
The information in this document is final, that is for a developed product. 

Web Address 

http://www.arm.com 

 

 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 4 

Confidential 

 

Contents 

ARM® Cordio WSF 1 

1 Preface 9 

1.1 About this book 9 

1.1.1 Intended audience 9 

1.1.2 Using this book 9 

1.1.3 Terms and abbreviations 10 

1.1.4 Conventions 11 

1.1.5 Additional reading 11 

1.2 Feedback 11 

1.2.1 Feedback on content 12 

2 Introduction 14 

3 Portable Data Types 15 

4 Buffers 16 

4.1 Data Types 16 

4.1.1 wsfBufPoolDesc_t 16 

4.2 Functions 16 

4.2.1 WsfBufInit() 16 

4.2.2 WsfBufAlloc() 16 

4.2.3 WsfBufFree() 16 

4.3 Diagnostic Macros 17 

4.4 Diagnostic Functions 17 

4.4.1 WsfBufGetMaxAlloc() 17 

4.4.2 WsfBufGetNumAlloc() 17 

4.4.3 WsfBufGetAllocStats() 17 

4.4.4 WsfBufGetPolStats() 18 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 5 

Confidential 

5 Queues 19 

5.1 Data Types 19 

5.1.1 wsfQueue_t 19 

5.2 Functions 19 

5.2.1 WSF_QUEUE_INIT() 19 

5.2.2 WsfQueueEnq() 19 

5.2.3 WsfQueueDeq() 19 

5.2.4 WsfQueuePush() 20 

5.2.5 WsfQueueInsert() 20 

5.2.6 WsfQueueRemove() 20 

5.2.7 WsfQueueCount() 20 

5.2.8 WsfQueueEmpty() 21 

6 Messages 22 

6.1 Functions 22 

6.1.1 WsfMsgAlloc() 22 

6.1.2 WsfMsgFree() 22 

6.1.3 WsfMsgSend() 22 

6.1.4 WsfMsgEnq() 22 

6.1.5 WsfMsgDeq() 23 

6.1.6 WsfMsgPeek () 23 

7 Timers 24 

7.1 Data Types 24 

7.1.1 wsfTimer_t 24 

7.2 Functions 24 

7.2.1 WsfTimerInit() 24 

7.2.2 WsfTimerStartSec() 24 

7.2.3 WsfTimerStartMs() 25 

7.2.4 WsfTimerStop() 25 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 6 

Confidential 

7.2.5 WsfTimerUpdate() 25 

7.2.6 WsfTimerNextExpiration() 25 

7.2.7 WsfTimerServiceExpired() 25 

8 Event Handlers 27 

8.1 Data Types 27 

8.1.1 wsfMsgHdr_t 27 

8.2 Functions 27 

8.2.1 (*wsfEventHandler_t)() 27 

8.2.2 WsfSetEvent() 27 

8.2.3 WsfOsSetNextHandler() 28 

9 Critical Sections 29 

9.1 Macros 29 

9.1.1 WSF_CS_INIT() 29 

9.1.2 WSF_CS_ENTER() 29 

9.1.3 WSF_CS_EXIT() 29 

10 Task Schedule Locking 30 

10.1 Functions 30 

10.1.1 WsfTaskLock() 30 

10.1.2 WsfTaskUnlock() 30 

11 Assert 31 

11.1 Macros 31 

11.1.1 WSF_ASSERT() 31 

11.1.2 WSF_CT_ASSERT() 31 

12 Trace 32 

13 Security 33 

13.1 Data Types 33 

13.1.1 wsfSecMsg_t 33 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 7 

Confidential 

13.1.2 wsfSecEccKey_t 33 

13.1.3 wsfSecEccSharedSec_t 33 

13.1.4 wsfSecEccMsg_t 33 

13.2 Functions 33 

13.2.1 WsfSecInit() 34 

13.2.2 WsfSecRandInit() 34 

13.2.3 WsfSecAesInit() 34 

13.2.4 WsfSecCmacInit() 34 

13.2.5 WsfSecEccInit() 34 

13.2.6 WsfSecAes() 34 

13.2.7 WsfSecCmac() 35 

13.2.8 WsfSecEccGenKey() 35 

13.2.9 WsfSecEccGenSharedSecret() 35 

13.2.10 WsfSecRand() 36 





Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 9 

Confidential 

1 Preface 

This preface introduces the Wireless Software Foundation API Reference Manual.  

1.1 About this book 

This document describes the Wireless Software Foundation (WSF) API and lists the API functions and 

their parameters. 

1.1.1 Intended audience 

This book is written for experienced software engineers who might or might not have experience with 

ARM products. Such engineers typically have experience of writing Bluetooth applications but might 

have limited experience of the Cordio software stack. 

It is also assumed that the readers have access to all necessary tools. 

1.1.2 Using this book 

This book is organized into the following chapters: 

 Introduction 

Read this for an overview of the API. 

 Portable Data Types 

Read this for a list of data types used in the API. 

 Buffers 

Read this for a description of the buffer service functions. 

 Queues 

Read this for a description of the queue service functions. 

 Messages 

Read this for a description of the message service used to pass messages to WSF event 

functions. 

 Timers 

Read this for a description of the timer service functions. 

 Event Handlers 

Read this for a description of the WSF event handlers receive events, message, and timer 

expirations from other components in the service. 

 Critical Sections 

Read this for a description of the critical section macros used in code which might be executed 

in an interrupt context. 

 Task Schedule Locking 

Read this for a description of the interfaces for locking and unlocking task scheduling. 

 Assert 

Read this for a description of the macros used for testing and debugging. 

 Trace 

Read this for a description of the trace macros used for trace diagnostics. 

 Security 

Read this for a description of the security service functions. 

 Revisions 

Read this chapter for descriptions of the changes between document versions.  

  



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 10 

Confidential 

1.1.3 Terms and abbreviations 

For a list of ARM terms, see the ARM glossary.  

Terms specific to the Cordio software are listed below: 

Term Description 

ACL Asynchronous Connectionless data packet 

AD Advertising Data 

ARQ Automatic Repeat reQuest 

ATT Attribute Protocol, also attribute protocol software subsystem 

ATTC Attribute Protocol Client software subsystem 

ATTS Attribute Protocol Server software subsystem 

CCC or CCCD Client Characteristic Configuration Descriptor 

CID Connection Identifier 

CSRK Connection Signature Resolving Key 

DM Device Manager software subsystem 

GAP Generic Access Profile 

GATT Generic Attribute Profile 

HCI Host Controller Interface 

IRK Identity Resolving Key 

JIT Just In Time 

L2C L2CAP software subsystem 

L2CAP Logical Link Control Adaptation Protocol 

LE (Bluetooth) Low Energy 

LL Link Layer 

LLPC Link Layer Control Protocol 

LTK Long Term Key 

MITM Man In The Middle pairing (authenticated pairing) 

OOB Out Of Band data 

SMP Security Manager Protocol, also security manager protocol software subsystem 

SMPI Security Manager Protocol Initiator software subsystem 

SMPR Security Manager Protocol Responder software subsystem 

STK Short Term Key 

WSF Wireless Software Foundation software service and porting layer. 

 

  

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html


Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 11 

Confidential 

1.1.4 Conventions 

The following table describes the typographical conventions:  

Typographical conventions  

Style Purpose 

Italic Introduces special terminology, denotes cross-references, and 

citations.  

bold Highlights interface elements, such as menu names. Denotes 

signal names. Also used for terms in descriptive lists, where 

appropriate. 

MONOSPACE Denotes text that you can enter at the keyboard, such as 

commands, file and program names, and source code. 

MONOSPACE Denotes a permitted abbreviation for a command or option. You 

can enter the underlined text instead of the full command or option 

name. 

monospace italic Denotes arguments to monospace text where the argument is to be 

replaced by a specific value. 

monospace bold  Denotes language keywords when used outside example code. 

<and> Encloses replaceable terms for assembler syntax where they 

appear in code or code fragments. For example: 

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2> 

SMALL CAPITALS Used in body text for a few terms that have specific technical 

meanings, that are defined in the ARM
®

 Glossary. For example, 

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, 

and UNPREDICTABLE. 

1.1.5 Additional reading 

This section lists publications by ARM and by third parties. 

See Infocenter for access to ARM documentation. 

Other publications 

This section lists relevant documents published by third parties:  

 Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015. 

 

1.2 Feedback 

ARM welcomes feedback on this product and its documentation. 

http://infocenter.arm.com/


Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 12 

Confidential 

1.2.1 Feedback on content 

If you have comments on content then send an e-mail to errata@arm.com. Give:  

 The title.  

 The number, ARM-EPM-115156.  

 The page numbers to which your comments apply.  

 A concise explanation of your comments. 

 

ARM also welcomes general suggestions for additions and improvements. 

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the 

quality of the represented document when used with any other PDF reader.





Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 14 

Confidential 

2 Introduction 

This document describes the Wireless Software Foundation (WSF) API.   

WSF is a simple OS wrapper, porting layer, and general-purpose software service used by the Cordio 

embedded software system.   

The goal of WSF is to stay small and lean, supporting only the basic services required by the system.  It 

consists of the following: 

 Event handler service with event and message passing. 

 Timer service. 

 Queue and buffer management service. 

 Portable data types. 

 Critical sections and task locking. 

 Trace and assert diagnostic services. 

 Security interfaces for encryption and random number generation. 

WSF does not define any tasks but defines some interfaces to tasks.  It relies on the target OS to 

implement tasks and manage the timer and event handler services from target OS tasks.  WSF can also 

act as a simple standalone OS in software systems without an existing OS. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 15 

Confidential 

3 Portable Data Types 

WSF defines the following portable data types in file wsf_types.h.  These data types are used 

throughout the software system. 

Table 1 Integer types 

Name Description 

int8_t 8 bit signed integer 

uint8_t 8 bit unsigned integer 

int16_t 16 bit signed integer 

uint16_t 16 bit unsigned integer 

int32_t 32 bit signed integer 

uint32_t 32 bit unsigned integer 

uint64_t 64 bit unsigned integer 

bool_t Boolean integer 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 16 

Confidential 

4 Buffers 

The WSF buffer management service is a pool-based dynamic memory allocation service.  The buffer 

service interface is defined in file wsf_buf.h. 

4.1 Data Types 

4.1.1 wsfBufPoolDesc_t 

This is buffer pool descriptor structure.  It is used by function WsfBufInit(). 

 

Type Name Description 

uint16_t len Length of buffers in pool. 

uint8_t num Number of buffers in pool. 

 

4.2 Functions 

4.2.1 WsfBufInit() 

Initialize the buffer pool service.  This function should only be called once upon system initialization. 

Syntax: 

uint16_t WsfBufInit(uint16_t bufMemLen, uint8_t *pBufMem, uint8_t numPools, 

wsfBufPoolDesc_t *pDesc) 

Where: 

 bufMemLen:  Length in bytes of memory pointed to by pBufMem. 

 pBufMem:  Memory in which to store the pools used by the buffer pool service. 

 numPools:  Number of buffer pools. 

 pDesc:  Array of buffer pool descriptors, one for each pool 

This function returns the amount of pBufMem used or 0 for failures. 

4.2.2 WsfBufAlloc() 

Allocate a buffer.  

Syntax: 

void *WsfBufAlloc(uint16_t len) 

Where: 

 len:  Length of buffer to allocate. 

This function returns a pointer to the buffer or NULL if allocation fails. 

4.2.3 WsfBufFree() 

Free a buffer. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 17 

Confidential 

Syntax: 

void WsfBufFree(void *pBuf) 

Where: 

 pBuf:  Buffer to free. 

4.3 Diagnostic Macros 

The following macros are used for diagnostic purposes. 

Table 2 Diagnostic macros 

Name Value Description 

WSF_BUF_FREE_CHECK TRUE, 

FALSE 

Assert if trying to free a buffer that is already free. 

WSF_BUF_ALLOC_FAIL_ASSERT TRUE, 

FALSE 

Set to TRUE to assert on buffer allocation failure. 

WSF_BUF_STATS TRUE, 

FALSE 

Set to TRUE to collect buffer allocation statistics. 

 

4.4 Diagnostic Functions 

4.4.1 WsfBufGetMaxAlloc() 

Diagnostic function to get maximum allocated buffers from a pool. 

Syntax: 

uint8_t WsfBufGetMaxAlloc(uint8_t pool) 

Where: 

 pool:  Buffer pool number. 

This function returns the number of allocated buffers. 

4.4.2 WsfBufGetNumAlloc() 

Diagnostic function to get the number of currently allocated buffers in a pool. 

Syntax: 

uint8_t WsfBufGetNumAlloc(uint8_t pool) 

Where: 

 pool:  Buffer pool number. 

This function returns the number of allocated buffers. 

4.4.3 WsfBufGetAllocStats() 

Diagnostic function to get the buffer allocation statistics.   



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 18 

Confidential 

The statistics contain a count of each call to WsfBufAlloc() for the requested buffer length.   

Syntax: 

uint8_t *WsfBufGetAllocStats(void) 

The function returns a 128-byte array indexed by the length passed to WsfBufAlloc() with each 

element containing the total number of calls to WsfBufAlloc() for that length. 

4.4.4 WsfBufGetPolStats() 

Get statistics for each pool. 

Syntax: 

uint8_t WsfBufGetPolStats(WsfBufPoolStat_t *pStat, uint8_t numPool) 

Where: 

 pStat:  Buffer to store statistics. 

 numPool:  Number of pool elements. 

This function returns the pool statistics in variable pStat. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 19 

Confidential 

5 Queues 

The WSF queue service is a general purpose queue service that is used throughout the software system.  

The queue service interface is defined in function wsf_queue.h. 

5.1 Data Types 

5.1.1 wsfQueue_t 

Table 3 Queue data structure 

Type Name Description 

void * pHead Head of queue. 

void * pTail Tail of queue. 

 

5.2 Functions 

5.2.1 WSF_QUEUE_INIT() 

This macro initializes a queue structure. 

Syntax: 

WSF_QUEUE_INIT(pQueue) 

Where: 

 pBuf:  Pointer to queue. 

5.2.2 WsfQueueEnq() 

Enqueue an element to the tail of a queue. 

Syntax: 

void WsfQueueEnq(wsfQueue_t *pQueue, void *pElem) 

Where: 

 pQueue:  Pointer to queue. 

 pElem:  Pointer to element. 

5.2.3 WsfQueueDeq() 

Dequeue an element from the head of a queue. 

Syntax: 

void *WsfQueueDeq(wsfQueue_t *pQueue) 

Where: 

 pQueue:  Pointer to queue. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 20 

Confidential 

This function returns a pointer to the element that has been dequeued or NULL if the queue is empty. 

5.2.4 WsfQueuePush() 

Push an element to the head of a queue. 

Syntax: 

void WsfQueuePush(wsfQueue_t *pQueue, void *pElem) 

Where: 

 pQueue:  Pointer to queue. 

 pElem:  Pointer to element. 

5.2.5 WsfQueueInsert() 

Insert an element into a queue.   

This function is typically used when iterating over a queue. 

Syntax: 

void WsfQueueInsert(wsfQueue_t *pQueue, void *pElem, void *pPrev) 

Where: 

 pQueue:  Pointer to queue. 

 pElem:  Pointer to element to be inserted. 

 pPrev:  Pointer to previous element in the queue before element to be inserted.   

Note:  set pPrev to NULL if pElem is first element in queue. 

5.2.6 WsfQueueRemove() 

Remove an element from a queue.  This function is typically used when iterating over a queue. 

Syntax: 

void WsfQueueRemove(wsfQueue_t *pQueue, void *pElem, void *pPrev) 

Where: 

 pQueue:  Pointer to queue. 

 pElem:  Pointer to element to be inserted. 

 pPrev:  Pointer to previous element in the queue before element to be removed. 

5.2.7 WsfQueueCount() 

Count the number of elements in a queue. 

Syntax: 

uint16_t WsfQueueCount(wsfQueue_t *pQueue) 

Where: 

 pQueue:  Pointer to queue. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 21 

Confidential 

This function returns the number of elements in the queue. 

5.2.8 WsfQueueEmpty() 

Test if queue is empty. 

Syntax: 

bool_t WsfQueueEmpty(wsfQueue_t *pQueue) 

Where: 

 pQueue:  Pointer to queue. 

This function returns TRUE if queue is empty, FALSE otherwise. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 22 

Confidential 

6 Messages 

The WSF message service is used to pass messages to WSF event handlers.   

The WSF message service is defined in file wsf_msg.h. 

6.1 Functions 

6.1.1 WsfMsgAlloc() 

Allocate a message buffer to be sent with WsfMsgSend(). 

Syntax: 

void *WsfMsgAlloc(uint16_t len) 

Where: 

 len:  Message length in bytes. 

This function returns a pointer to the message buffer or NULL if allocation failed. 

6.1.2 WsfMsgFree() 

Free a message buffer allocated with WsfMsgAlloc(). 

Syntax: 

void WsfMsgFree(void *pMsg) 

Where: 

 pMsg:  Pointer to message buffer. 

6.1.3 WsfMsgSend() 

Send a message to an event handler. 

Syntax: 

void WsfMsgSend(wsfHandlerId_t handlerId, void *pMsg) 

Where: 

 handlerId:  Event handler ID. 

 pMsg:  Pointer to message buffer. 

6.1.4 WsfMsgEnq() 

Enqueue a message. 

Syntax: 

void WsfMsgEnq(wsfQueue_t *pQueue, wsfHandlerId_t handlerId, void *pMsg) 

Where: 

 pQueue:  Pointer to queue. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 23 

Confidential 

 handerId:  Set message handler ID to this value. 

 pElem:  Pointer to message buffer. 

6.1.5 WsfMsgDeq() 

Dequeue a message. 

Syntax: 

void *WsfMsgDeq(wsfQueue_t *pQueue, wsfHandlerId_t *pHandlerId) 

Where: 

 pQueue:  Pointer to queue. 

 pHandlerId:  Handler ID of returned message; this is a return parameter. 

This function returns a pointer to the message that has been dequeued or NULL if the queue is empty. 

6.1.6 WsfMsgPeek () 

Get the next message without removing it from the queue. 

Syntax: 

void *WsfMsgPeek (wsfQueue_t *pQueue, wsfHandlerId_t *pHandlerId) 

Where: 

 pQueue:  Pointer to queue. 

 pHandlerId:  Handler ID of returned message; this is a return parameter. 

This function returns a pointer to the next message on the queue or NULL if the queue is empty. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 24 

Confidential 

7 Timers 

The WSF timer service is used by WSF event handlers.   

When a timer expires, the event handler associated with that timer is executed. 

7.1 Data Types 

This section describe the timer data types. 

7.1.1 wsfTimer_t 

Table 4 Timer data structure. 

Type Name Description 

wsfTimer_t * pNext Pointer to next timer in queue. 

wsfTimerTicks_t ticks Number of ticks until expiration. 

wsfHandlerId_t handlerId Event handler for this timer. 

bool_t isStarted TRUE if timer has been started. 

wsfMsgHdr_t msg Application-defined timer event parameters. 

 

7.2 Functions 

This section describe the timer functions. 

7.2.1 WsfTimerInit() 

Initialize the timer service.  This function should only be called once upon system initialization. 

Syntax: 

void WsfTimerInit (void) 

7.2.2 WsfTimerStartSec() 

Start a timer in units of seconds.   

Before this function is called parameter pTimer->handlerId must be set to the event handler for this 

timer and parameter pTimer->msg must be set to any application-defined timer event parameters. 

Syntax: 

void WsfTimerStartSec(wsfTimer_t *pTimer, wsfTimerTicks_t sec) 

Where: 

 pTimer:  Pointer to timer. 

 sec:  Seconds until expiration. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 25 

Confidential 

7.2.3 WsfTimerStartMs() 

Start a timer in units of milliseconds. 

Syntax: 

void WsfTimerStartMs(wsfTimer_t *pTimer, wsfTimerTicks_t ms) 

Where: 

 pTimer:  Pointer to timer. 

 ms:  Milliseconds until expiration. 

7.2.4 WsfTimerStop() 

Stop a timer. 

Syntax: 

void WsfTimerStop(wsfTimer_t *pTimer) 

Where: 

 pTimer:  Pointer to timer. 

7.2.5 WsfTimerUpdate() 

Update the timer service with the number of elapsed ticks.   

This function is typically called only from WSF timer porting code. 

Syntax: 

void WsfTimerUpdate(wsfTimerTicks_t ticks) 

Where: 

 ticks:  Number of ticks since last update. 

7.2.6 WsfTimerNextExpiration() 

Return the number of ticks until the next timer expiration.   

Note: This function can return zero even if a timer is running, indicating the timer has expired but has 

not yet been serviced. 

Syntax: 

wsfTimerTicks_t WsfTimerNextExpiration(bool_t *pTimerRunning) 

Where: 

 pTimerRunning:  Returns TRUE if a timer is running, FALSE if no timers running. 

This function returns the number of ticks until the next timer expiration. 

7.2.7 WsfTimerServiceExpired() 

Service expired timers for the given task.   



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 26 

Confidential 

This function is typically called only from WSF OS porting code. 

Syntax: 

wsfTimer_t *WsfTimerServiceExpired(wsfTaskId_t taskId) 

Where: 

 taskId:  OS Task ID of task servicing timers. 

This function returns a pointer to next expired timer or NULL if there are no expired timers. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 27 

Confidential 

8 Event Handlers 

WSF event handlers receive WSF events, messages, and timer expirations from other components in 

the software system.  Event handlers are used by the main protocol subsystems of the stack.   

The event handler interface is defined in file wsf_os.h. 

8.1 Data Types 

This section describe the event handler data types. 

8.1.1 wsfMsgHdr_t 

This is the common message structure passed to event handlers. 

Table 5 Event handler message 

Type Name Description 

uint16_t param General purpose parameter passed to event handler. 

uint8_t event General purpose event value passed to event handler. 

uint8_t status General purpose status value passed to event handler. 

 

8.2 Functions 

This section describe the event handler functions. 

8.2.1 (*wsfEventHandler_t)() 

This is the data type for event handler callback functions. 

Syntax: 

void (*wsfEventHandler_t)(wsfEventMask_t event, wsfMsgHdr_t *pMsg) 

Where: 

 event:  Mask of events set for the event handler. 

 pMsg:  Pointer to message for the event handler. 

8.2.2 WsfSetEvent() 

Set an event to an event handler. 

Syntax: 

void WsfSetEvent(wsfHandlerId_t handlerId, wsfEventMask_t event) 

Where: 

 handlerId:  Handler ID. 

 event:  Event or events to set. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 28 

Confidential 

8.2.3 WsfOsSetNextHandler() 

Set the next WSF handler function in the WSF OS handler array.   

This function should only be called as part of the OS initialization procedure. 

Syntax: 

wsfHandlerId_t WsfOsSetNextHandler(wsfEventHandler_t handler) 

Where: 

 handler:  WSF handler function. 

This function returns the WSF handler ID for this handler. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 29 

Confidential 

9 Critical Sections 

WSF provides critical section macros that are used in code which might be executed in interrupt 

context to protect global data.  The critical section interface is defined in file wsf_cs.h. 

9.1 Macros 

This section describe the macros. 

9.1.1 WSF_CS_INIT() 

Initialize critical section.  This macro may define a variable. 

Syntax: 

WSF_CS_INIT(cs) 

Where: 

 cs:  Critical section variable to be defined. 

9.1.2 WSF_CS_ENTER() 

Enter a critical section. 

Syntax: 

WSF_CS_ENTER(cs) 

Where: 

 cs:  Critical section variable. 

9.1.3 WSF_CS_EXIT() 

Exit a critical section. 

Syntax: 

WSF_CS_EXIT(cs) 

Where: 

 cs:  Critical section variable. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 30 

Confidential 

10 Task Schedule Locking 

WSF provides interfaces for locking and unlocking task scheduling.  This allows for operation in pre-

emptive multi-tasking environments.  The task schedule locking interface is defined in file wsf_os.h. 

10.1 Functions 

This section describe the task schedule functions. 

10.1.1 WsfTaskLock() 

Lock task scheduling. 

Syntax: 

void WsfTaskLock(void) 

10.1.2 WsfTaskUnlock() 

Unlock task scheduling. 

Syntax: 

void WsfTaskUnlock(void) 

 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 31 

Confidential 

11 Assert 

WSF defines assert macros that are used for testing and debugging purposes.  The assert interface is 

defined in file wsf_assert.h. 

11.1 Macros 

This section describe the assert macros. 

11.1.1 WSF_ASSERT() 

Run-time assert macro.  The assert executes when the expression is FALSE. 

Syntax: 

WSF_ASSERT(expr) 

Where: 

 expr:  Boolean expression to be tested. 

11.1.2 WSF_CT_ASSERT() 

Compile-time assert macro.  This macro causes a compiler error when the expression is FALSE.  Note 

that this macro is generally used at file scope to test constant expressions.   

Errors may result if it is used in executing code. 

Syntax: 

WSF_CT_ASSERT(expr) 

Where: 

• expr:  Boolean expression to be tested. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 32 

Confidential 

12 Trace 

WSF defines trace macros that are used throughout the software system for diagnostic purposes.  A 

separate set of trace macros is used for each software subsystem (for example, WSF, HCI, DM, and 

ATT).  This allows trace messages to be compiled in/out for each subsystem.  Within each set of 

subsystem trace macros there are separate macros for different types of trace messages: 

 INFO:  Informational messages. 

 WARN:  Warning messages. 

 ERR:  Error messages. 

 ALLOC:  Memory or other resource is allocated. 

 FREE:  Memory or other resource is freed. 

 MSG:  WSF event handler message is sent. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 33 

Confidential 

13 Security 

WSF provides interfaces to encryption and random number generation algorithms.  These algorithms 

are used by the stack to perform various Bluetooth LE security procedures. 

13.1 Data Types 

This section describe the security data types. 

13.1.1 wsfSecMsg_t 

Table 6 AES security callback parameters structure 

Type Name Description 

wsfMsgHdr_t hdr Message header. 

uint8_t *pCiphertext Pointer to 16 bytes of ciphertext data. 

 

13.1.2 wsfSecEccKey_t 

Table 7 ECC Security callback parameters structure 

Type Name Description 

uint8_t pubKey_x[WSF_ECC_KEY_LEN] Public key X. 

uint8_t pubKey_y[WSF_ECC_KEY_LEN] Public key Y. 

uint8_t privKey[WSF_ECC_KEY_LEN] Private key. 

 

13.1.3 wsfSecEccSharedSec_t 

Table 8 ECC shared secret structure 

Type Name Description 

uint8_t secret[WSF_ECC_KEY_LEN] Shared secret. 

 

13.1.4 wsfSecEccMsg_t 

Table 9 ECC Security callback parameters structure 

Type Name Description 

wsfSecEccSharedSec_t sharedSecret Shared secret. 

wsfSecEccKey_t key ECC key structure. 

 

13.2 Functions 

This section describe the security functions. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 34 

Confidential 

13.2.1 WsfSecInit() 

Initialize the security service.   

This function should only be called once upon system initialization. 

Syntax: 

void WsfSecInit(void) 

13.2.2 WsfSecRandInit() 

Initialize the random number service.   

This function should only be called once upon system initialization. 

Syntax: 

void WsfSecRandInit(void) 

13.2.3 WsfSecAesInit() 

Initialize the AES service.   

This function should only be called once upon system initialization. 

Syntax: 

void WsfSecAesInit (void) 

13.2.4 WsfSecCmacInit() 

Called to initialize CMAC security.   

This function should only be called once upon system initialization. 

Syntax: 

void WsfSecCmacInit (void) 

13.2.5 WsfSecEccInit() 

Called to initialize ECC security.   

This function should only be called once upon system initialization. 

Syntax: 

void WsfSecEccInit(void) 

13.2.6 WsfSecAes() 

Execute an AES calculation.   

When the calculation completes, a WSF message will be sent to the specified handler.   

Syntax: 

uint8_t WsfSecAes(uint8_t *pKey, uint8_t *pPlaintext, wsfHandlerId_t handlerId, 

uint16_t param, uint8_t event) 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 35 

Confidential 

Where: 

 pKey:  Pointer to 16 byte key. 

 pPlaintext:  Pointer to 16 byte plaintext. 

 handlerId:  WSF handler ID. 

 param:  Client-defined parameter returned in message. 

 event:  Event for client's WSF handler. 

This function returns a token value that the client can use to match calls to this function with messages. 

13.2.7 WsfSecCmac() 

Execute the CMAC algorithm. 

Syntax: 

uint8_t WsfSecCmac(const uint8_t *pKey, uint8_t *pPlaintext, uint8_t textLen, 

wsfHandlerId_t handlerId, uint16_t param, uint8_t event) 

Where: 

 pKeyKey:  used in CMAC operation. 

 pPlaintext:  Data to perform CMAC operation over 

 len:  Size of pPlaintext in bytes. 

 handlerId:  WSF handler ID for client. 

 param:  Optional parameter sent to client's WSF handler. 

 event:  Event for client's WSF handler. 

This function returns TRUE if successful, FALSE otherwise. 

13.2.8 WsfSecEccGenKey() 

Generate an ECC key. 

Syntax: 

uint8_t WsfSecEccGenKey(wsfHandlerId_t handlerId, uint16_t param, uint8_t event) 

Where: 

 handlerId:  WSF handler ID for client. 

 param:  Optional parameter sent to client's WSF handler. 

 event:  Event for client's WSF handler. 

This function returns TRUE if successful, FALSE otherwise. 

13.2.9 WsfSecEccGenSharedSecret() 

Generate an ECC shared secret from the input ECC keys. 

Syntax: 

uint8_t WsfSecEccGenSharedSecret(wsfSecEccKey_t *pKey, wsfHandlerId_t handlerId, 

uint16_t param, uint8_t event) 

Where: 

 pKey:  ECC Key structure. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 36 

Confidential 

 handlerId:  WSF handler ID for client. 

 param:  Optional parameter sent to client's WSF handler. 

 event:  Event for client's WSF handler. 

This function returns TRUE if successful, FALSE otherwise. 

13.2.10 WsfSecRand() 

This function returns up to 16 bytes of random data to a buffer provided by the client. 

Syntax: 

void WsfSecRand(uint8_t *pRand, uint8_t randLen) 

Where: 

 pRand:  Pointer to returned random data. 

 randLen:  Length of random data. 

 


