
Copyright  2009-2016 ARM. All rights reserved. Page 1

Confidential

ARM® Cordio Stack

ARM-EPM-115880 1.0

Device Manager API

Confidential

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 2

Confidential

ARM® Cordio Stack Device Manager API

Reference Manual
Copyright © 2009-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change

21 January 2016 - Confidential First Wicentric release for 1.6 as 2009-0008.

1 March 2016 A Confidential First ARM release for 1.6.

24 August 2016 A Confidential AUSPEX # / API Update

Proprietary Notice
This document is CONFIDENTIAL and any use by you is subject to the terms of the agreement between you and ARM or the terms of

the agreement between you and the party authorised by ARM to disclose this document to you.

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this

document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any

form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to

any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the

information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology

or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or

creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for

publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this

document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,

SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE

DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or

understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,

HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS

DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this

document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,

directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to

create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without

notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this

document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This

document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version

of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or

elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.

Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2009-2016, ARM Limited or its affiliates. All rights reserved.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 3

Confidential

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status
This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with

the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 4

Confidential

Contents

ARM® Cordio Stack 1

1 Preface 11

1.1 About this book 11

1.1.1 Intended audience 11

1.1.2 Using this book 11

1.1.3 Terms and abbreviations 12

1.1.4 Conventions 13

1.1.5 Additional reading 13

1.2 Feedback 13

1.2.1 Feedback on content 14

2 Introduction 16

3 Main Interface 17

3.1 Constants and data types 17

3.1.1 Device Role 17

3.1.2 Discoverability mode 17

3.1.3 Advertising type 17

3.1.4 Address type 18

3.1.5 Advertising and scan intervals 18

3.2 Functions 18

3.2.1 DmRegister() 18

3.2.2 DmFindAdType() 18

3.3 Callback interface 19

3.3.1 (*dmCback_t)() 19

3.3.2 Callback events 19

4 Advertising and Device Visibility 22

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 5

Confidential

4.1 Constants and data types 22

4.1.1 Data Location 22

4.2 Advertising data element types 22

4.3 Advertising channel map 23

4.4 Functions 24

4.4.1 DmAdvInit() 24

4.4.2 DmExtAdvInit() 24

4.4.3 DmAdvStart() 24

4.4.4 DmAdvStop() 24

4.4.5 DmAdvSetInterval() 24

4.4.6 DmAdvSetChannelMap() 25

4.4.7 DmAdvSetData() 25

4.4.8 DmAdvSetAddrType () 25

4.4.9 DmAdvSetAdValue() 25

4.4.10 DmAdvSetName() 26

4.4.11 DmAdvPrivInit() 26

4.4.12 DmAdvPrivStart() 26

4.4.13 DmAdvPrivStop() 27

4.5 Callback interface 27

4.5.1 DM_ADV_START_IND: Advertising started 27

4.5.2 DM_ADV_STOP_IND: Advertising stopped 27

4.5.3 DM_ADV_NEW_ADDR_IND: New resolvable address has been generated 27

5 Scanning and Device Discovery 29

5.1 Constants and data types 29

5.1.1 Scan type 29

5.2 Functions 29

5.2.1 DmScanInit() 29

5.2.2 DmExtScanInit() 29

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 6

Confidential

5.2.3 DmScanStart() 29

5.2.4 DmScanStop() 30

5.2.5 DmScanSetInterval() 30

5.2.6 DmScanSetAddrType () 30

5.3 Callback interface 31

5.3.1 DM_SCAN_START_IND: Scanning started 31

5.3.2 DM_SCAN_STOP_IND: Scanning stopped 31

5.3.3 DM_SCAN_REPORT_IND: Scan report 31

6 Connection Management 32

6.1 Constants and data types 32

6.1.1 Client ID 32

6.1.2 dmConnId_t 32

6.1.3 Connection busy/idle state 32

6.1.4 Busy/Idle state bitmask 32

6.2 Functions 33

6.2.1 DmConnInit() 33

6.2.2 DmConnMasterInit() 33

6.2.3 DmExtConnMasterInit() 33

6.2.4 DmConnSlaveInit() 33

6.2.5 DmExtConnSlaveInit() 34

6.2.6 DmConnRegister() 34

6.2.7 DmConnOpen() 34

6.2.8 DmConnClose() 34

6.2.9 DmConnAccept() 35

6.2.10 DmConnUpdate() 35

6.2.11 DmConnSetScanInterval() 35

6.2.12 DmConnSetConnSpec() 36

6.2.13 DmConnReadRssi() 36

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 7

Confidential

6.2.14 DmRemoteConnParamReqReply() 36

6.2.15 DmRemoteConnParamReqNegReply() 36

6.2.16 DmConnSetDataLen() 37

6.2.17 DmWriteAuthPayloadTimeout() 37

6.2.18 DmConnSecLevel() 37

6.2.19 DmConnSetAddrType () 37

6.2.20 DmConnSetIdle() 37

6.2.21 DmConnCheckIdle() 38

6.3 Callback interface 38

6.3.1 DM_CONN_OPEN_IND: Connection opened 38

6.3.2 DM_CONN_CLOSE_IND: Connection closed 39

6.3.3 DM_CONN_UPDATE_IND: Connection update 39

6.3.4 DM_CONN_READ_RSSI_IND: connection RSSI read 39

6.3.5 DM_REM_CONN_PARAM_REQ_IND: Remote connection parameter
requested 40

6.3.6 DM_CONN_DATA_LEN_CHANGE_IND: Connection data length changed 40

6.3.7 DM_CONN_WRITE_AUTH_TO_IND: Write authenticated payload timeout
complete 41

6.3.8 DM_CONN_AUTH_TO_EXPIRED_IND: Authenticated payload timeout
expired 41

7 Local Device Management 43

7.1 Functions 43

7.1.1 DmDevReset() 43

7.1.2 DmDevRole() 43

7.1.3 DmDevSetRandAddr() 43

7.1.4 DmDevWhiteListAdd() 43

7.1.5 DmDevWhiteListRemove() 43

7.1.6 DmDevWhiteListClear() 44

7.2 Callback interface 44

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 8

Confidential

7.2.1 DM_RESET_CMPL_IND: Reset complete 44

8 Security Management 45

8.1 Constants and data types 45

8.1.1 Authentication flags 45

8.1.2 Key distribution 45

8.1.3 Key type 45

8.1.4 Security level 46

8.1.5 Security error codes 46

8.1.6 Keypress types 47

8.1.7 dmSecLtk_t 47

8.1.8 dmSecIrk_t 47

8.1.9 dmSecCsrk_t 47

8.1.10 dmSecKey_t 48

8.2 Function interface 48

8.2.1 DmSecInit() 48

8.2.2 DmSecPairReq() 48

8.2.3 DmSecPairRsp() 48

8.2.4 DmSecCancelReq() 49

8.2.5 DmSecAuthRsp() 49

8.2.6 DmSecSlaveReq() 49

8.2.7 DmSecEncryptReq() 50

8.2.8 DmSecLtkRsp() 50

8.2.9 DmSecSetLocalCsrk() 50

8.2.10 DmSecSetLocalIrk() 50

8.2.11 DmSecLescInit() 51

8.2.12 DmSecKeypressReq() 51

8.2.13 DmSecGenerateEccKeyReq() 51

8.2.14 DmSecSetEccKey() 51

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 9

Confidential

8.2.15 DmSecSetDebugEccKey() 51

8.2.16 DmSecSetOob() 51

8.2.17 DmSecCalcOobReq() 52

8.2.18 DmSecCompareRsp() 52

8.3 Callback interface 52

8.3.1 DM_SEC_PAIR_CMPL_IND: Pairing complete 52

8.3.2 DM_SEC_PAIR_FAIL_IND: Pairing failed 52

8.3.3 DM_SEC_ENCRYPT_IND: Connection encrypted 53

8.3.4 DM_SEC_ENCRYPT_FAIL_IND: Encryption failed 53

8.3.5 DM_SEC_AUTH_REQ_IND: Authentication requested 53

8.3.6 DM_SEC_KEY_IND: Key data 54

8.3.7 DM_SEC_LTK_REQ_IND: LTK requested 54

8.3.8 DM_SEC_PAIR_IND: Incoming pairing request 54

8.3.9 DM_SEC_SLAVE_REQ_IND: Incoming slave security request 55

8.3.10 DM_SEC_CALC_OOB_IND: Out of band confirm 55

8.3.11 DM_SEC_ECC_KEY_IND: ECC key generation 55

8.3.12 DM_SEC_COMPARE_IND: Confirm comparison pairing 56

8.3.13 DM_SEC_KEYPRESS_IND: Keypress from peer 56

9 Privacy 57

9.1 Function interface 57

9.1.1 DmPrivInit() 57

9.1.2 DmPrivResolveAddr() 57

9.1.3 DmPrivAddDevToResList() 57

9.1.4 DmPrivRemDevFromResList() 58

9.1.5 DmPrivClearResList() 58

9.1.6 DmPrivReadPeerResolvableAddr() 58

9.1.7 DmPrivReadLocalResolvableAddr () 58

9.1.8 DmPrivSetAddrResEnable() 59

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 10

Confidential

9.1.9 DmPrivSetResolvablePrivateAddrTimeout () 59

9.2 Callback interface 59

9.2.1 DM_PRIV_RESOLVED_ADDR_IND: Private address resolved 59

9.2.2 DM_PRIV_ADD_DEV_TO_RES_LIST_IND: Device added to resolving list 59

9.2.3 DM_PRIV_REM_DEV_FROM_RES_LIST_IND: Device removed from
resolving list 60

9.2.4 DM_PRIV_CLEAR_RES_LIST_IND: Resolving list cleared 60

9.2.5 DM_PRIV_READ_PEER_RES_ADDR_IND: Peer resolving address read 60

9.2.6 DM_PRIV_READ_LOCAL_RES_ADDR_IND: Local resolving address read 60

9.2.7 DM_PRIV_SET_ADDR_RES_ENABLE_IND: Address resolving enable set 61

10 Scenarios 62

10.1 Advertising and scanning 62

10.2 Connection open and close 62

10.3 Pairing 63

10.4 Encryption 64

10.5 Privacy 65

10.6 ECC key generation 66

10.7 Out of Band confirm calculation 67

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 11

Confidential

1 Preface

This preface introduces the Cordio Stack Device Manager API Reference Manual.

1.1 About this book

This document describes the Device Manager (DM) API and lists the API functions and their

parameters.

1.1.1 Intended audience

This book is written for experienced software engineers who might or might not have experience with

ARM products. Such engineers typically have experience of writing Bluetooth applications but might

have limited experience of the Cordio software stack.

It is also assumed that the readers have access to all necessary tools.

1.1.2 Using this book

This book is organized into the following chapters:

 Introduction

Read this for an overview of the API.
 Main Interface

Read this for a list of common main interfaces used in the API.
 Advertising and Device Visibility

Read this for a description advertising and device visibility functions.
 Scanning and Device Discovery

Read this for a description of scanning and device discovery functions.
 Connection Management

Read this for a description of connection management functions.
 Local Device Management

Read this for a description of local device management functions.
 Security Management

Read this for a description of security management functions.
 Privacy

Read this for a description of privacy functions.
 Scenarios

Read this for an overview of how APIs are used in different scenarios.
 Revisions

Read this chapter for descriptions of the changes between document versions.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 12

Confidential

1.1.3 Terms and abbreviations

For a list of ARM terms, see the ARM glossary.

Terms specific to the Cordio software are listed below:

Term Description

ACL Asynchronous Connectionless data packet

AD Advertising Data

AE Advertising Extensions

ARQ Automatic Repeat reQuest

ATT Attribute Protocol, also attribute protocol software subsystem

ATTC Attribute Protocol Client software subsystem

ATTS Attribute Protocol Server software subsystem

CCC or CCCD Client Characteristic Configuration Descriptor

CID Connection Identifier

CSRK Connection Signature Resolving Key

DM Device Manager software subsystem

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JIT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

OOB Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem

SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 13

Confidential

1.1.4 Conventions

The following table describes the typographical conventions:

Typographical conventions

Style Purpose

Italic Introduces special terminology, denotes cross-references, and

citations.

bold Highlights interface elements, such as menu names. Denotes

signal names. Also used for terms in descriptive lists, where

appropriate.

MONOSPACE Denotes text that you can enter at the keyboard, such as

commands, file and program names, and source code.

MONOSPACE Denotes a permitted abbreviation for a command or option. You

can enter the underlined text instead of the full command or option

name.

monospace italic Denotes arguments to monospace text where the argument is to be

replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they

appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical

meanings, that are defined in the ARM
®

 Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,

and UNPREDICTABLE.

1.1.5 Additional reading

This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

 Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

http://infocenter.arm.com/

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 14

Confidential

1.2.1 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

 The title.

 The number, ARM-EPM-115146.

 The page numbers to which your comments apply.

 A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the

quality of the represented document when used with any other PDF reader.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 16

Confidential

2 Introduction

This document describes the API of the Device Manager (DM) subsystem. The device manager is

responsible for many important operations of the protocol stack such as:

 Advertising and device visibility.

 Scanning and device discovery.

 Connection management.

 Security management.

 Local device management.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 17

Confidential

3 Main Interface

3.1 Constants and data types

3.1.1 Device Role

This parameter identifies the device role.

Table 1 Device role parameter

Name Value Description

DM_ROLE_MASTER 0 Role is master.

DM_ROLE_SLAVE 1 Role is slave.

3.1.2 Discoverability mode

This parameter sets the GAP discoverability mode.

Table 2 Discoverability Mode

Name Value Description

DM_DISC_MODE_NONE 0 GAP non-discoverable. Peer devices performing

GAP discovery cannot discover this device.

DM_DISC_MODE_LIMITED 1 GAP limited discoverable mode. Peer devices

performing GAP limited discovery can discover this

device.

DM_DISC_MODE_GENERAL 2 GAP general discoverable mode. Peer devices

performing GAP limited or general discovery can

discover this device.

3.1.3 Advertising type

The advertising type indicates the connectable and discoverable nature of the advertising packets

transmitted by a device.

Table 3 Advertising type

Name Value Description

DM_ADV_CONN_UNDIRECT 0 Connectable undirected advertising. Peer devices

can scan and connect to this device.

DM_ADV_CONN_DIRECT 1 Connectable directed advertising. Only a specified

peer device can connect to this device.

DM_ADV_SCAN_UNDIRECT 2 Scannable undirected advertising. Peer devices can

scan this device but cannot connect.

DM_ADV_NONCONN_UNDIRECT 3 Non-connectable undirected advertising. Peer

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 18

Confidential

devices cannot scan or connect to this device.

DM_ADV_CONN_DIRECT_LO_DUTY 4 Connectable directed low duty cycle advertising.

3.1.4 Address type

The address type indicates whether an address is public or random.

Table 4 Address type

Name Value Description

DM_ADDR_PUBLIC 0 Public address.

DM_ADDR_RANDOM 1 Random address.

DM_ADDR_PUBLIC_IDENTITY 2 Public identity address

DM_ADDR_RANDOM_IDENTITY 3 Random (static) identity address

DM_ADDR_RANDOM_UNRESOLVED 0xFE Random device address (controller can’t resolve)

DM_ADDR_NONE 0xFF No address provided (anonymous)

3.1.5 Advertising and scan intervals

Advertising and scan intervals in this API are specified in 0.625 ms units.

3.2 Functions

3.2.1 DmRegister()

Register a callback with DM for scan and advertising events.

Syntax:

void DmRegister(dmCback_t cback)

Where:

 cback: Client callback function. See 3.3.1.

3.2.2 DmFindAdType()

Find an advertising data element in the given advertising or scan response data.

Syntax:

uint8_t *DmFindAdType(uint8_t adType, uint16_t dataLen, uint8_t *pData)

Where:

 adType: Advertising data element type to find. See 4.2.

 dataLen: Data length.

 pData: Pointer to advertising or scan response data.

This function returns a pointer to the advertising data element byte array or NULL if not found.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 19

Confidential

3.3 Callback interface

3.3.1 (*dmCback_t)()

This callback function sends DM events to the client.

Syntax:

void (*dmCback_t)(dmEvt_t *pDmEvt)

Where:

 pDmEvt: Pointer to DM event structure.

3.3.2 Callback events

The following callback event values are passed in the DM event structure.

Table 5 Callback events

Name Description

DM_RESET_CMPL_IND Reset complete.

DM_ADV_START_IND Advertising started.

DM_ADV_STOP_IND Advertising stopped.

DM_ADV_NEW_ADDR_IND New resolvable address has been generated.

DM_SCAN_START_IND Scanning started.

DM_SCAN_STOP_IND Scanning stopped.

DM_SCAN_REPORT_IND Scan data received from peer device.

DM_CONN_OPEN_IND Connection opened.

DM_CONN_CLOSE_IND Connection closed.

DM_CONN_UPDATE_IND Connection update complete.

DM_SEC_PAIR_CMPL_IND Pairing completed successfully.

DM_SEC_PAIR_FAIL_IND Pairing failed or other security failure.

DM_SEC_ENCRYPT_IND Connection encrypted.

DM_SEC_ENCRYPT_FAIL_IND Encryption failed.

DM_SEC_AUTH_REQ_IND PIN or OOB data requested for pairing.

DM_SEC_KEY_IND Security key indication.

DM_SEC_LTK_REQ_IND LTK requested for encyption.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 20

Confidential

DM_SEC_PAIR_IND Incoming pairing request from master.

DM_SEC_SLAVE_REQ_IND Incoming security request from slave.

DM_SEC_CALC_OOB_IND Result of OOB Confirm Calculation Generation.

DM_SEC_ECC_KEY_IND Result of ECC Key Generation.

DM_SEC_COMPARE_IND Result of Just Works/Numeric Comparison Compare

Value calculation.

DM_SEC_KEYPRESS_IND Keypress indication from peer in passkey security.

DM_PRIV_RESOLVED_ADDR_IND Private address resolved.

DM_CONN_READ_RSSI_IND Connection RSSI read.

DM_PRIV_ADD_DEV_TO_RES_LIST_IND Device added to resolving list.

DM_PRIV_REM_DEV_FROM_RES_LIST_IND Device removed from resolving list.

DM_PRIV_CLEAR_RES_LIST_IND Resolving list cleared.

DM_PRIV_READ_PEER_RES_ADDR_IND Peer resolving address read.

DM_PRIV_READ_LOCAL_RES_ADDR_IND Local resolving address read.

DM_PRIV_SET_ADDR_RES_ENABLE_IND Address resolving enable set.

DM_REM_CONN_PARAM_REQ_IND Remote connection parameter requested.

DM_CONN_DATA_LEN_CHANGE_IND Data length changed.

DM_CONN_WRITE_AUTH_TO_IND Write authenticated payload complete.

DM_CONN_AUTH_TO_EXPIRED_IND Authenticated payload timeout expired.

DM_PHY_READ_IND Read PHY

DM_PHY_SET_DEF_IND Set default PHY

DM_PHY_UPDATE_IND PHY update

DM_ADV_SET_START_IND Advertising set(s) started

DM_ADV_SET_STOP_IND Advertising set(s) stopped

DM_SCAN_REQ_RCVD_IND Scan request received

DM_EXT_SCAN_START_IND Extended scanning started

DM_EXT_SCAN_STOP_IND Extended scanning stopped

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 21

Confidential

DM_EXT_SCAN_REPORT_IND Extended scan data received from peer device

DM_ERROR_IND General error.

DM_VENDOR_SPEC_IND Vendor specific event.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 22

Confidential

4 Advertising and Device Visibility

The DM interface for advertising and device visibility configures, enables, and disables the advertising

procedure. A device advertises when it wishes to connect to or be discovered by other devices.

Devices may also advertise to simply broadcast data.

This interface can only be used when operating as a slave.

4.1 Constants and data types

4.1.1 Data Location

This parameter indicates whether data is located in the advertising data or the scan response data.

Table 6 Callback events

Name Value Description

DM_DATA_LOC_ADV 0 Locate data in the advertising data.

DM_DATA_LOC_SCAN 1 Locate data in the scan response data.

4.2 Advertising data element types

This parameter indicates the type of advertising data element.

Table 7 Advertising data element types

Name Description

DM_ADV_TYPE_FLAGS Flag bits.

DM_ADV_TYPE_16_UUID_PART Partial list of 16 bit UUIDs.

DM_ADV_TYPE_16_UUID Complete list of 16 bit UUIDs.

DM_ADV_TYPE_32_UUID_PART Partial list of 32 bit UUIDs.

DM_ADV_TYPE_32_UUID Complete list of 32 bit UUIDs.

DM_ADV_TYPE_128_UUID_PART Partial list of 128 bit UUIDs.

DM_ADV_TYPE_128_UUID Complete list of 128 bit UUIDs.

DM_ADV_TYPE_SHORT_NAME Shortened local name.

DM_ADV_TYPE_LOCAL_NAME Complete local name.

DM_ADV_TYPE_TX_POWER TX power level.

DM_ADV_TYPE_SM_TK_VALUE Security manager TK value

DM_ADV_TYPE_SM_OOB_FLAGS Security manager OOB flags

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 23

Confidential

DM_ADV_TYPE_CONN_INTERVAL Slave preferred connection interval.

DM_ADV_TYPE_SIGNED_DATA Signed data.

DM_ADV_TYPE_16_SOLICIT Service solicitation list of 16 bit UUIDs.

DM_ADV_TYPE_128_SOLICIT Service solicitation list of 128 bit UUIDs.

DM_ADV_TYPE_SERVICE_DATA Service data.

DM_ADV_TYPE_PUBLIC_TARGET Public target address.

DM_ADV_TYPE_RANDOM_TARGET Random target address.

DM_ADV_TYPE_APPEARANCE Device appearance.

DM_ADV_TYPE_ADV_INTERVAL Advertising interval

DM_ADV_TYPE_BD_ADDR LE Bluetooth device address

DM_ADV_TYPE_ROLE LE role

DM_ADV_TYPE_32_SOLICIT Service solicitation list of 32 bit UUIDs

DM_ADV_TYPE_SVC_DATA_32 Service data – 32-bit UUID

DM_ADV_TYPE_SVC_DATA_128 Service data – 128-bit UUID

DM_ADV_TYPE_LESC_CONFIRM LE secure connection confirm value

DM_ADV_TYPE_LESC_RANDOM LE secure connection random value

DM_ADV_TYPE_URI URI

DM_ADV_TYPE_MANUFACTURER Manufacturer specific data.

4.3 Advertising channel map

This parameter indicates the advertising channel map.

Table 8 Advertising channel map

Name Description

DM_ADV_CHAN_37 Advertising channel 37.

DM_ADV_CHAN_38 Advertising channel 38.

DM_ADV_CHAN_39 Advertising channel 39.

DM_ADV_CHAN_ALL All advertising channels.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 24

Confidential

4.4 Functions

4.4.1 DmAdvInit()

Initialize DM advertising. This function is typically called once at system startup.

Syntax:

void DmAdvInit(void)

4.4.2 DmExtAdvInit()

Initialize DM extended advertising. This function is typically called once at system startup.

Syntax:

void DmExtAdvInit(void)

4.4.3 DmAdvStart()

This function is called to start advertising using the given advertising set and duration.

Syntax:

void DmAdvStart(uint8_t numSets, uint8_t *pAdvHandle, uint16_t *pDuration, uint8_t

*pMaxEaEvents)

Where:

 numSets: Number of advertising sets to enable.

 pAdvHandle: Advertising handle array.

 pDuration: Advertising duration (in milliseconds) array.

 pMaxEaEvents: Maximum number of extended advertising events array.

If advertising is started successfully the client’s callback function is called with a DM_ADV_START_IND

event. If advertising fails to start for any reason the client’s callback function is called with a

DM_ADV_STOP_IND event. The client’s callback function is also called with a DM_ADV_STOP_IND event

if the advertising duration expires or DmAdvStop() is called.

4.4.4 DmAdvStop()

This function is called to stop advertising. When advertising is stopped the client’s callback function is

called with a DM_ADV_STOP_IND event.

Syntax:

void DmAdvStop(uint8_t numSets, uint8_t *pAdvHandles)

Where:

 numSets: Number of advertising sets to enable.

 pAdvHandles: Advertising handles array.

4.4.5 DmAdvSetInterval()

This function sets the minimum and maximum advertising intervals. This function should only be

called when advertising is stopped.

Syntax:

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 25

Confidential

void DmAdvSetInterval(uint8_t advHandle, uint16_t intervalMin, uint16_t

intervalMax)

Where:

 advHandle: Advertising handle

 intervalMin: Minimum advertising interval. See 3.1.4.

 intervalMax: Maximum advertising interval. See 3.1.4.

4.4.6 DmAdvSetChannelMap()

This function is used to include or exclude certain channels from the advertising channel map. This

function should only be called when advertising is stopped.

Syntax:

void DmAdvSetChannelMap(uint8_t advHandle, uint8_t channelMap)

Where:

 advHandle: Advertising handle

 channelMap: Advertising channel map. See 4.3.

4.4.7 DmAdvSetData()

This function sets the advertising or scan response data to the given data. The data will replace any

existing data already present with the same advertising data type.

Syntax:

void DmAdvSetData(uint8_t advHandle, uint8_t op, uint8_t location, uint8_t len,

uint8_t *pData)

Where:

 advHandle: Advertising handle

 op: Data operation

 location: Data location. See 4.1.1.

 len: Length of the data. Maximum length is 31 bytes.

 pData: Pointer to the data.

4.4.8 DmAdvSetAddrType ()

Set the local address type used while advertising. This function can be used to configure advertising to

use a random or private address.

Syntax:

void DmAdvSetAddrType(uint8_t addrType)

Where:

 addrType: Address type. See 3.1.4.

4.4.9 DmAdvSetAdValue()

Set the value of an advertising data element in the given advertising or scan response data. If the

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 26

Confidential

element already exists in the data then it is replaced with the new value. If the element does not exist in

the data it is appended to it, space permitting.

Syntax:

Bool DmAdvSetAdValue(uint8_t adType, uint8_t len, uint8_t *pValue, uint8_t

*pAdvDataLen, uint8_t *pAdvData, uint16_t advDataBufLen)

Where:

 adType: Advertising data element type.

 len: Length of the value. Maximum length is 29 bytes.

 pValue: Pointer to the value.

 pAdvDataLen: Advertising or scan response data length. The new length is returned in

this parameter.

 pAdvData: Pointer to advertising or scan response data.

 advDataBufLen: Length of the advertising or scan response data buffer maintained by the

application.

Returns TRUE if the element was successfully added to the data, FALSE otherwise.

4.4.10 DmAdvSetName()

Set the device name in the given advertising or scan response data. If the name can only fit in the data

if it is shortened, the name is shortened and the AD type is changed to DM_ADV_TYPE_SHORT_NAME.

Syntax:

Bool DmAdvSetName(uint8_t len, uint8_t *pValue, uint8_t *pAdvDataLen, uint8_t

*pAdvData, uint16_t advDataBufLen)

Where:

 len: Length of the name. Maximum length is 29 bytes.

 pValue: Pointer to the name in UTF-8 format.

 pAdvDataLen: Advertising or scan response data length. The new length is returned in

this parameter.

 pAdvData: Pointer to advertising or scan response data.

 advDataBufLen: Length of the advertising or scan response data buffer maintained by the

application.

Returns TRUE if the element was successfully added to the data, FALSE otherwise.

4.4.11 DmAdvPrivInit()

Initialize private advertising. This function is typically called once at system startup to enable the use

of advertising with a private resolvable address.

Syntax:

void DmAdvPrivInit(void)

4.4.12 DmAdvPrivStart()

Start using a private resolvable address and start periodic generation of a new address.

When a new address is generated the client’s callback function is called with a DM_ADV_NEW_ADDR_IND

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 27

Confidential

event. The application must wait to receive this event once before starting advertising.

To stop using a private resolvable address call function DmAdvPrivStop().

This function should not be used when the device is operating as a master, as master devices are

forbidden from using a private resolvable address.

Syntax:

void DmAdvPrivStart(uint16_t changeInterval)

Where:

 changeInterval: Interval between automatic address changes, in seconds.

4.4.13 DmAdvPrivStop()

Stop using a private resolvable address.

Syntax:

void DmAdvPrivStop(void)

4.5 Callback interface

4.5.1 DM_ADV_START_IND: Advertising started

Callback event for advertising started.

Table 9 Advertising started

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

4.5.2 DM_ADV_STOP_IND: Advertising stopped

Callback event for advertising stopped.

Table 10 Advertising stopped

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

4.5.3 DM_ADV_NEW_ADDR_IND: New resolvable address has been generated

Callback event for new resolvable address has been generated.

Table 11 New resolvable address

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

bdAddr_t addr New resolvable private address.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 28

Confidential

bool_t firstTime TRUE when address is generated for the first time.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 29

Confidential

5 Scanning and Device Discovery

The DM scanning and device discovery interface configures, enables, and disables the scanning

procedure. A device scans when it wishes to discover or connect to other devices. A device may also

scan simply to receive broadcast advertisements.

This interface can only be used when operating as a master.

5.1 Constants and data types

5.1.1 Scan type

This parameter indicates the scan type. A passive scan only receives advertising packets. An active

scan receives advertising packets and scan response packets.

Table 12 Scan type

Name Value Description

DM_SCAN_TYPE_PASSIVE 0 Passive scan.

DM_SCAN_TYPE_ACTIVE 1 Active scan.

5.2 Functions

5.2.1 DmScanInit()

Initialize DM scanning. This function is typically called once at system startup.

Syntax:

void DmScanInit(void)

5.2.2 DmExtScanInit()

Initialize DM AE scanning. This function is typically called once at system startup.

Syntax:

void DmExtScanInit(void)

5.2.3 DmScanStart()

This function is called to start scanning. A scan is performed using the given discoverability mode,

scan type, and duration.

Syntax:

void DmScanStart(uint8_t scanPhys, uint8_t mode, uint8_t scanType, bool_t

filterDup, uint16_t duration, uint16_t period)

Where:

 scanPhys: Scanner PHYs.

 mode: Discoverability mode. See 3.1.1.

 scanType: Scan type. See 5.1.1.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 30

Confidential

 filterDup: Filter duplicates. Set to TRUE to filter duplicate responses received from the

same device. Set to FALSE to receive all responses.

 duration: The scan duration, in milliseconds. If set to zero, scanning will continue until

DmScanStop() is called.

 period: Period (only applicable to AE).

If scanning is started successfully the client’s callback function is called with a DM_SCAN_START_IND

event. If scanning fails to start for any reason the client’s callback function is called with a

DM_SCAN_STOP_IND event. The client’s callback function is also called with a DM_SCAN_STOP_IND

event if the scan duration expires or DmScanStop() is called.

Example for GAP limited discovery:

DmScanStart(HCI_SCAN_PHY_LE_1M_BIT, DM_DISC_MODE_LIMITED,

DM_SCAN_TYPE_ACTIVE, TRUE, 10240, 0);

Example for GAP general discovery:

DmScanStart(HCI_SCAN_PHY_LE_1M_BIT, DM_DISC_MODE_GENERAL,

DM_SCAN_TYPE_ACTIVE, TRUE, 10240, 0);

Example for GAP observe procedure:

DmScanStart(HCI_SCAN_PHY_LE_1M_BIT, DM_DISC_MODE_NONE,

DM_SCAN_TYPE_PASSIVE, FALSE, 0, 0);

5.2.4 DmScanStop()

This function is called to stop scanning. When scanning is stopped the client’s callback function is

called with a DM_SCAN_STOP_IND event.

Syntax:

void DmScanStop(void)

5.2.5 DmScanSetInterval()

This function sets the scan interval and window. This function should only be called when scanning is

stopped.

Syntax:

void DmScanSetInterval(uint8_t scanPhy, uint16_t scanInterval, uint16_t

scanWindow)

Where:

 scanPhy: Scanning PHY.

 scanInterval: The scan interval. See 3.1.4.

 scanWindow: The scan window. See 3.1.4.

5.2.6 DmScanSetAddrType ()

Set the local address type used while scanning. This function can be used to configure scanning to use

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 31

Confidential

a random or private address.

Syntax:

void DmScanSetAddrType (uint8_t addrType)

Where:

 addrType: Address type. See 3.1.4.

5.3 Callback interface

5.3.1 DM_SCAN_START_IND: Scanning started

Callback event for scanning started.

Table 13 Scanning started

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

5.3.2 DM_SCAN_STOP_IND: Scanning stopped

Callback event for scanning stopped.

Table 14 Scanning stopped

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

5.3.3 DM_SCAN_REPORT_IND: Scan report

Callback event for scan report. This event uses type hciLeAdvReportEvt_t defined in ARM Cordio

Stack API Reference Manual.

Table 15 Scan report

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

uint8_t * pData Pointer to received data.

uint8_t len Data length.

int8_t rssi RSSI of received packet.

uint8_t eventType Scan report event type. See 3.1.3.

uint8_t addrType Peer address type.

bdAddr_t addr Peer address.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 32

Confidential

6 Connection Management

The DM connection management interface is used to open, accept, configure, and close connections. It

is also used to read connection-related information such as the RSSI, channel map, and remote device

information.

6.1 Constants and data types

6.1.1 Client ID

The client ID parameter to function DmConnRegister() identifies the client to the DM connection

manager. The possible values are shown below.

Table 16 Client ID

Name Description

DM_CLIENT_ID_ATT Identifier for attribute protocol. For internal use only.

DM_CLIENT_ID_SMP Identifier for security manager protocol. For internal use only.

DM_CLIENT_ID_DM Identifier for device manager. For internal use only.

DM_CLIENT_ID_APP Identifier for the application.

DM_CLIENT_ID_L2C Identifier for L2CAP.

6.1.2 dmConnId_t

This data type is used for the connection identifier. The connection identifier uniquely identifies the

connection.

6.1.3 Connection busy/idle state

The connection busy/idle state indicates when the connection is busy with a stack protocol procedure,

such as pairing or service discovery. The application can use this state to decide whether or not to

perform certain connection operations such as a connection parameter update.

Table 17 Connection busy/idle state

Name Description

DM_CONN_IDLE Connection is idle.

DM_CONN_BUSY Connection is busy.

6.1.4 Busy/Idle state bitmask

The connection busy/idle bitmask indicates which stack protocol procedure or application procedure is

busy.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 33

Confidential

Table 18 Busy/idle state bitmask

Name Description

DM_IDLE_SMP_PAIR SMP pairing in progress.

DM_IDLE_DM_ENC DM Encryption setup in progress.

DM_IDLE_ATTS_DISC ATTS service discovery in progress.

DM_IDLE_APP_DISC App framework service discovery in progress.

DM_IDLE_USER_1 For use by user application.

DM_IDLE_USER_2 For use by user application.

DM_IDLE_USER_3 For use by user application.

DM_IDLE_USER_4 For use by user application.

6.2 Functions

6.2.1 DmConnInit()

Initialize DM connection manager. This function is typically called once at system startup.

Syntax:

void DmConnInit(void)

6.2.2 DmConnMasterInit()

Initialize DM connection manager for operation as master. This function is typically called once at

system startup.

Syntax:

void DmConnMasterInit(void)

6.2.3 DmExtConnMasterInit()

Initialize DM connection manager for operation as AE master. This function is typically called once at

system startup.

Syntax:

void DmExtConnMasterInit(void)

6.2.4 DmConnSlaveInit()

Initialize DM connection manager for operation as slave. This function is typically called once at

system startup.

Syntax:

void DmConnSlaveInit(void)

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 34

Confidential

6.2.5 DmExtConnSlaveInit()

Initialize DM connection manager for operation as AE slave. This function is typically called once at

system startup.

Syntax:

void DmExtConnSlaveInit(void)

6.2.6 DmConnRegister()

This function is called by a client to register with the DM connection manager. After registering the

client can call other functions in the API to open, close, update or accept a connection. The client will

also receive DM connection events via its callback for all connections, whether or not initiated by the

client.

Syntax:

void DmConnRegister(uint8_t clientId, dmCback_t cback)

Where:

 clientId: The client identifier. See 6.1.1.

 cback: Client callback function. See 3.3.1.

6.2.7 DmConnOpen()

This function opens a connection to a peer device with the given address. This function can only be

called when operating as a master.

Syntax:

dmConnId_t dmConnId_t DmConnOpen(uint8_t clientId, uint8_t initPhys, uint8_t

addrType, uint8_t *pAddr)

Where:

 clientId: The client identifier. See 6.1.1.

 initPhys: PHYs initialized for use.

 addrType: Address type. See 3.1.4.

 pAddr: Peer device address.

This function returns a connection identifier. When the connection is opened the client’s callback

function is called with a DM_CONN_OPEN_IND event. If the connection fails for any reason the client’s

callback function is called with a DM_CONN_CLOSE_IND event.

6.2.8 DmConnClose()

This function closes the connection with the give connection identifier. This function can be called

when operating as a master or slave.

Syntax:

void DmConnClose(uint8_t clientId, dmConnId_t connId, uint8_t reason)

Where:

 clientId: The client identifier. See 6.1.1.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 35

Confidential

 connId: Connection identifier. See 6.1.2.

 reason: Reason connection is being closed.

When the connection is closed the client’s callback function is called with a DM_CONN_CLOSE_IND

event.

6.2.9 DmConnAccept()

This function accepts a connection from the given peer device by initiating directed advertising. This

function can only be called when operating as a slave.

Syntax:

dmConnId_t DmConnAccept(uint8_t clientId, uint8_t advHandle, uint8_t advType,

uint16_t duration, uint8_t maxEaEvents, uint8_t addrType, uint8_t

*pAddr)

Where:

 clientId: The client identifier. See 6.1.1.

 advHandle: Advertising handle.

 advType: Advertising type. See 3.1.3.

 duration: Advertising duration.

 maxEaEvents: Maximum number of extended advertising events.

 addrType: Address type. See 3.1.4.

 pAddr: Peer device address.

This function returns a connection identifier. When the connection is opened the client’s callback

function is called with a DM_CONN_OPEN_IND event. If the connection fails for any reason or if the

connection is not opened within 1.28 seconds the client’s callback function is called with a

DM_CONN_CLOSE_IND event.

6.2.10 DmConnUpdate()

This function updates the connection parameters of an open connection. This function can be called

when operating as a master or a slave.

Syntax:

void DmConnUpdate(dmConnId_t connId, hciConnSpec_t *pConnSpec)

Where:

 connId: Connection identifier. See 6.1.2.

 pConnSpec: Connection specification. See the ARM Cordio Stack API Reference Manual.

6.2.11 DmConnSetScanInterval()

 This function sets the scan interval and window for created connections created with DmConnOpen().

This function must be called before calling DmConnOpen() for the parameters to be in effect.

Syntax:

void DmConnSetScanInterval(uint8_t initPhy, uint16_t scanInterval, uint16_t

scanWindow)

Where:

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 36

Confidential

 initPhy: The initiator PHY.

 scanInterval: The scan interval. See 3.1.4.

 scanWindow: The scan window. See 3.1.4.

6.2.12 DmConnSetConnSpec()

This function sets the connection specification parameters for connections created with DmConnOpen().

This function must be called before calling DmConnOpen() for the parameters to be in effect.

Syntax:

void DmConnSetConnSpec(hciConnSpec_t *pConnSpec)

Where:

 pConnSpec: Connection specification. See the ARM Cordio Stack API Reference Manual.

6.2.13 DmConnReadRssi()

This function reads RSSI of a given connection.

Syntax:

void DmConnReadRssi(dmConnId_t connId)

Where:

 connId: Connection identifier. See 6.1.2.

6.2.14 DmRemoteConnParamReqReply()

Reply to the HCI remote connection parameter request event. This command is used to indicate that

the Host has accepted the remote device’s request to change connection parameters.

Syntax:

void DmRemoteConnParamReqReply(dmConnId_t connId , hciConnSpec_t *pConnSpec)

Where:

 connId: Connection identifier. See 6.1.2.

 pConnSpec: Connection specification. See the ARM Cordio Stack API Reference Manual.

6.2.15 DmRemoteConnParamReqNegReply()

Negative reply to the HCI remote connection parameter request event. This command is used to

indicate that the Host has rejected the remote device’s request to change connection parameters.

Syntax:

void DmRemoteConnParamReqNegReply(dmConnId_t connId , uint8_t reason)

Where:

 connId: Connection identifier. See 6.1.2.

 reason: Reason for rejection.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 37

Confidential

6.2.16 DmConnSetDataLen()

This function sets the data length for a given connection.

Syntax:

void DmConnSetDataLen(dmConnId_t connId , uint16_t txOctets, uint16_t txTime)

Where:

 connId: Connection identifier. See 6.1.2.

 txOctets: Maximum number of payload octets for a Data PDU.

 txTime: Maximum number of microseconds for a Data PDU.

6.2.17 DmWriteAuthPayloadTimeout()

This function sets authenticated payload timeout for a given connection.

Syntax:

void DmWriteAuthPayloadTimeout(dmConnId_t connId, uint16_t timeout)

Where:

 connId: Connection identifier. See 6.1.2.

 timeout: Timeout period in units of 10ms.

6.2.18 DmConnSecLevel()

Return the security level of the connection.

Syntax:

uint8_t DmConnSecLevel(dmConnId_t connId)

Where:

 connId: Connection identifier. See 6.1.2.

6.2.19 DmConnSetAddrType ()

Set the local address type used for connections created with DmConnOpen(). This function can be used

to create connections using a random or private address.

Syntax:

void DmConnSetAddrType (uint8_t addrType)

Where:

 addrType: Address type. See 3.1.4.

6.2.20 DmConnSetIdle()

Configure a bit in the connection idle state mask as busy or idle.

Syntax:

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 38

Confidential

void DmConnSetIdle(dmConnId_t connId, uint16_t idleMask, uint8_t idle)

Where:

 connId: Connection identifier. See 6.1.2.

 idleMask: Bit in the idle state mask to configure. See 6.1.4.

 idle: DM_CONN_BUSY or DM_CONN_IDLE. See 6.1.3.

6.2.21 DmConnCheckIdle()

Check if a connection is idle.

Syntax:

uint16_t DmConnCheckIdle(dmConnId_t connId)

Where:

 connId: Connection identifier. See 6.1.2.

This function returns zero if the connection is idle or nonzero if busy.

6.3 Callback interface

6.3.1 DM_CONN_OPEN_IND: Connection opened

Callback event for connection opened. This event uses type hciLeConnCmplEvt_t defined in ARM

Cordio Stack API Reference Manual.

Table 19 Connection opened

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t Status Connection status

uint16_t handle Connection handle.

uint8_t role Connection role.

uint8_t addrType Address type.

bdAddr_t peerAddr Peer address.

uint16_t connInterval Connection interval.

uint16_t connLatency Connection latency.

uint16_t supTimeout Connection supervision timeout.

uint8_t clockAccuracy Peer clock accuracy.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 39

Confidential

6.3.2 DM_CONN_CLOSE_IND: Connection closed

Callback event for connection closed. This event uses type hciDisconnectCmplEvt_t defined in the

ARM Cordio Stack API Reference Manual.

Table 20 Connection closed

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t status Connection status

uint16_t handle Connection handle.

uint8_t reason Disconnect reason.

6.3.3 DM_CONN_UPDATE_IND: Connection update

Callback event for connection update complete. This event uses type hciLeConnUpdateCmplEvt_t

defined in the ARM Cordio Stack API Reference Manual.

Table 21 Connection update

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t status Status of connection update procedure.

uint16_t handle Connection handle.

uint16_t connInterval Connection interval.

uint16_t connLatency Connection latency.

uint16_t supTimeout Supervision timeout.

6.3.4 DM_CONN_READ_RSSI_IND: connection RSSI read

Callback event for reading connection RSSI. This event uses type hciReadRssiCmdCmplEvt_t defined

in the ARM Cordio Stack API Reference Manual.

Table 22 RSSI read

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t status Status of procedure.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 40

Confidential

uint16_t handle Connection handle.

uint8_t rssi RSSI.

6.3.5 DM_REM_CONN_PARAM_REQ_IND: Remote connection parameter requested

Callback event for remote connection parameter requested. This event uses type

hciLeRemConnParamReqEvt_t defined in the ARM Cordio Stack API Reference Manual.

Table 23 Remote connection parameter requested

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint16_t handle Connection handle.

uint16_t intervalMin Minimum value of the connection interval requested

by the remote device.

uint16_t intervalMax Maximum value of the connection interval requested

by the remote device.

uint16_t latency Maximum allowed slave latency for the connection

specified as the number of connection events

requested by the remote device.

uint16_t timeout Supervision timeout for the connection requested by

the remote device.

6.3.6 DM_CONN_DATA_LEN_CHANGE_IND: Connection data length changed

Callback event for data length changed. This event uses type hciLeDataLenChangeEvt_t defined in the

ARM Cordio Stack API Reference Manual.

Table 24 Connection data length changed

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint16_t handle Connection handle.

uint16_t maxTxOctets The maximum number of payload octets in a Link

Layer Data Channel PDU that the local Controller

will send on this connection.

uint16_t maxTxTime The maximum time that the local Controller will take

to send a Link Layer Data Channel PDU on this

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 41

Confidential

connection.

uint16_t maxRxOctets The maximum number of payload octets in a Link

Layer Data Channel PDU that the local controller

expects to receive on this connection.

uint16_t maxRxTime The maximum time that the local Controller expects

to take to receive a Link Layer Data Channel PDU on

this connection.

6.3.7 DM_CONN_WRITE_AUTH_TO_IND: Write authenticated payload timeout complete

Callback event for write authenticated payload timeout complete. This event uses type

hciWriteAuthPayloadToCmdCmplEvt_t defined in the ARM Cordio Stack API Reference Manual.

Table 25 Write authenticated payload timeout complete

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t hdr.status Status of procedure.

uint8_t status Status of procedure.

uint16_t handle Connection handle.

6.3.8 DM_CONN_AUTH_TO_EXPIRED_IND: Authenticated payload timeout expired

Callback event for authenticated payload timeout expired. This event uses type

hciAuthPayloadToExpiredEvt_t defined in the ARM Cordio Stack API Reference Manual.

Table 26 Authenticated payload timeout expired

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t hdr.status Status of procedure.

uint16_t handle Connection handle.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 42

Confidential

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 43

Confidential

7 Local Device Management

The DM local device management interface is used for initialization and reset, setting local parameters,

sending vendor-specific commands, and LE GAP attribute management.

7.1 Functions

7.1.1 DmDevReset()

This function initiates the HCI reset sequence. When the reset sequence is complete the client’s

callback function is called with a DM_RESET_CMPL_IND event.

Syntax:

void DmDevReset(void)

7.1.2 DmDevRole()

This function returns the device role indicating master or slave. See 3.1.1.

Syntax:

uint8_t DmDevRole(void)

7.1.3 DmDevSetRandAddr()

Set the random address to be used by the local device.

Syntax:

void DmDevSetRandAddr(uint8_t *pAddr)

Where:

 pAddr: Random address.

7.1.4 DmDevWhiteListAdd()

Add a peer device to the white list. Note that this function cannot be called while advertising,

scanning, or connecting with white list filtering active.

Syntax:

void DmDevWhiteListAdd(uint8_t addrType, uint8_t *pAddr)

Where:

 addrType: Address type. See 3.1.4.

 pAddr: Peer device address.

7.1.5 DmDevWhiteListRemove()

Remove a peer device from the white list. Note that this function cannot be called while advertising,

scanning, or connecting with white list filtering active.

Syntax:

void DmDevWhiteListRemove(uint8_t addrType, uint8_t *pAddr)

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 44

Confidential

Where:

 addrType: Address type. See 3.1.4.

 pAddr: Peer device address.

7.1.6 DmDevWhiteListClear()

Clear the white list. Note that this function cannot be called while advertising, scanning, or connecting

with white list filtering active.

Syntax:

void DmDevWhiteListClear(void)

7.2 Callback interface

7.2.1 DM_RESET_CMPL_IND: Reset complete

Callback event for reset complete.

Table 27 Reset complete

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 45

Confidential

8 Security Management

The DM security management interface is used for pairing, authentication, and encryption.

8.1 Constants and data types

8.1.1 Authentication flags

This parameter contains the authentication flags of a procedure or its associated data.

Table 28 Authentication flags

Name Value Description

DM_AUTH_BOND_FLAG 0x01 Bonding requested.

DM_AUTH_MITM_FLAG 0x04 MITM (authenticated pairing) requested.

DM_AUTH_SC_FLAG 0x08 LE Secure Connections requested

DM_AUTH_KP_FLAG 0x10 Keypress notification requested

8.1.2 Key distribution

This parameter contains a bit mask of the keys distributed during the pairing procedure.

Table 29 Key distribution

Name Value Description

DM_KEY_DIST_LTK 0x01 Distribute LTK used for encryption.

DM_KEY_DIST_IRK 0x02 Distribute IRK used for privacy.

DM_KEY_DIST_CSRK 0x04 Distribute CSRK used for signed data.

8.1.3 Key type

This parameter indicates the key type used in DM_SEC_KEY_IND.

Table 30 Key type

Name Description

DM_KEY_LOCAL_LTK LTK generated locally for this device.

DM_KEY_PEER_LTK LTK received from peer device.

DM_KEY_IRK IRK and identity info of peer device.

DM_KEY_CSRK CSRK of peer device.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 46

Confidential

8.1.4 Security level

This parameter indicates the security level of a connection.

Table 31 Security level

Name Description

DM_SEC_LEVEL_NONE Connection has no security.

DM_SEC_LEVEL_ENC Connection is encrypted with unauthenticated key.

DM_SEC_LEVEL_ENC_AUTH Connection is encrypted with authenticated key.

DM_SEC_LEVEL_ENC_LESC Connection is encrypted with LE Secure Connections.

8.1.5 Security error codes

These error codes can be used in the status parameter of security functions and callback event

structures.

Table 32 Security error codes

Name Value Description

SMP_ERR_PASSKEY_ENTRY 0x01 User input of passkey failed.

SMP_ERR_OOB 0x02 OOB data is not available.

SMP_ERR_AUTH_REQ 0x03 Authentication requirements cannot be met.

SMP_ERR_CONFIRM_VALUE 0x04 Confirm value does not match.

SMP_ERR_PAIRING_NOT_SUP 0x05 Pairing is not supported by the device.

SMP_ERR_ENC_KEY_SIZE 0x06 Insufficient encryption key size.

SMP_ERR_COMMAND_NOT_SUP 0x07 Command not supported.

SMP_ERR_UNSPECIFIED 0x08 Unspecified reason.

SMP_ERR_ATTEMPTS 0x09 Repeated attempts.

SMP_ERR_INVALID_PARAM 0x0A Invalid parameter or command length.

SMP_ERR_DH_KEY_CHECK 0x0B DH Key check did not match

SMP_ERR_NUMERIC_COMPARISON 0x0C Numeric comparison did not match

SMP_ERR_BR_EDR_IN_PROGRESS 0x0D BR/EDR in progress

SMP_ERR_CROSS_TRANSPORT 0x0E BR/EDR Cross transport key generation not allowed

SMP_ERR_MEMORY 0xE0 Out of memory.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 47

Confidential

SMP_ERR_TIMEOUT 0xE1 Transaction timeout.

8.1.6 Keypress types

These values are used in to notify the peer of a keypress event types.

Table 33 Keypress types

Name Value Description

SMP_PASSKEY_ENTRY_STARTED 0x00 Passkey entry started keypress type.

SMP_PASSKEY_DIGIT_ENTERED 0x01 Passkey digit entered keypress type

SMP_PASSKEY_DIGIT_ERASED 0x02 Passkey digit erased keypress type

SMP_PASSKEY_CLEARED 0x03 Passkey cleared keypress type

SMP_PASSKEY_ENTRY_COMPLETED 0x04 Passkey entry complete keypress type

8.1.7 dmSecLtk_t

This data structure is the LTK data type.

Table 34 LTK data type

Type Name Description

uint8_t key[SMP_KEY_LEN] Key.

uint8_t * rand[SMP_RAND8_LEN] Random identifier for key.

uint16_t ediv Diversifier for key.

8.1.8 dmSecIrk_t

This data structure is the IRK data type.

Table 35 IRK data type

Type Name Description

uint8_t key[SMP_KEY_LEN] Key.

bdAddr_t bdAddr Peer device address.

uint8_t addrType Peer device address type.

8.1.9 dmSecCsrk_t

This data structure is the CSRK data type.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 48

Confidential

Table 36 CSRK data type

Type Name Description

uint8_t key[SMP_KEY_LEN] Key.

8.1.10 dmSecKey_t

This data structure is a union of key types.

Table 37 dmSecKey_t type

Type Name Description

dmSecLtk_t ltk LTK.

dmSecIrk_t irk IRK.

dmSecCsrk_t csrk CSRK.

8.2 Function interface

8.2.1 DmSecInit()

Initialize DM security manager. This function is typically called once at system startup.

Syntax:

void DmSecInit(void)

8.2.2 DmSecPairReq()

This function is called by a master device to initiate pairing.

Syntax:

void DmSecPairReq(dmConnId_t connId, bool_t oob, uint8_t auth, uint8_t iKeyDist,

uint8_t rKeyDist)

Where:

 connId: Connection identifier. See 6.1.2.

 oob: Out-of-band pairing data present or not present.

 auth: Authentication and bonding flags. See 8.1.1.

 iKeyDist: Initiator key distribution flags. See 8.1.2.

 rKeyDist: Responder key distribution flags. See 8.1.2.

When the pairing procedure is complete the client’s callback function is called with a

DM_SEC_PAIR_CMPL_IND event if successful or a DM_SEC_PAIR_FAIL_IND if failure.

8.2.3 DmSecPairRsp()

This function is called by a slave device to proceed with pairing after a DM_SEC_PAIR_IND event is

received. This function must be called within 30 seconds of receiving the event otherwise the

procedure will time out.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 49

Confidential

Syntax:

void DmSecPairRsp(dmConnId_t connId, bool_t oob, uint8_t auth, uint8_t iKeyDist,

uint8_t rKeyDist)

Where:

 connId: Connection identifier. See 6.1.2.

 oob: Out-of-band pairing data present or not present.

 auth: Authentication and bonding flags. See 8.1.1.

 iKeyDist: Initiator key distribution flags. See 8.1.2.

 rKeyDist: Responder key distribution flags. See 8.1.2.

When the pairing procedure is complete the client’s callback function is called with a

DM_SEC_PAIR_CMPL_IND event if successful or a DM_SEC_PAIR_FAIL_IND if failure.

8.2.4 DmSecCancelReq()

This function is called to cancel the pairing process.

Syntax:

void DmSecCancelReq(dmConnId_t connId, uint8_t reason)

Where:

 connId: Connection identifier. See 6.1.2.

 reason: Failure reason. See 8.1.5.

8.2.5 DmSecAuthRsp()

This function is called in response to a DM_SEC_AUTH_REQ_IND event to provide PIN or OOB data

during pairing.

Syntax:

void DmSecAuthRsp(dmConnId_t connId, uint8_t authDataLen, uint8_t *pAuthData)

Where:

 connId: Connection identifier. See 6.1.2.

 authDataLen: Length of PIN or OOB data. Set to 3 if PIN is used or 16 if OOB data is used.

 pAuthData: Pointer to PIN or OOB data. If PIN is used, this points to a byte array containing a

24-bit integer in little endian format.

8.2.6 DmSecSlaveReq()

This function is called by a slave device to request that the master initiates pairing or link encryption.

Syntax:

void DmSecSlaveReq(dmConnId_t connId, uint8_t auth)

Where:

 connId: Connection identifier. See 6.1.2.

 auth: Authentication and bonding flags. See 8.1.1.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 50

Confidential

8.2.7 DmSecEncryptReq()

This function is called by a master device to initiate link encryption.

Syntax:

void DmSecEncryptReq(dmConnId_t connId, uint8_t secLevel, dmSecLtk_t *pLtk)

Where:

 connId: Connection identifier. See 6.1.2.

 secLevel: Security level of pairing when LTK was exchanged. See 8.1.4.

 pLtk: Pointer to LTK parameter structure.

When the encryption procedure is complete the client’s callback function is called with a

DM_ENCRYPT_IND event if successful or a DM_ENCRYPT_FAIL_IND if failure.

8.2.8 DmSecLtkRsp()

This function is called by a slave in response to a DM_SEC_LTK_REQ_IND event to provide the long term

key used for encryption.

Syntax:

void DmSecLtkRsp(dmConnId_t connId, bool_t keyFound, uint8_t secLevel, uint8_t

*pKey)

Where:

 connId: Connection identifier. See 6.1.2.

 keyFound: TRUE if key found.

 secLevel: Security level of pairing when LTK was exchanged. See 8.1.4.

 pKey: Pointer to the key, if found.

8.2.9 DmSecSetLocalCsrk()

This function sets the local CSRK used by the device.

Syntax:

void DmSecSetLocalCsrk(uint8_t *pCsrk)

Where:

 pCsrk: Pointer to CSRK.

8.2.10 DmSecSetLocalIrk()

This function sets the local IRK used by the device.

Syntax:

void DmSecSetLocalIrk(uint8_t *pIrk)

Where:

 pIrk: Pointer to IRK.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 51

Confidential

8.2.11 DmSecLescInit()

This function is called to initialize the LE Secure Connections subsystem.

Syntax:

void DmSecLescInit(void)

8.2.12 DmSecKeypressReq()

This function can be used to send a keypress request command to the peer device during LE Secure

Connections Passkey Security.

Syntax:

void DmSecKeypressReq(dmConnId_t connId, uint8_t keypressType)

Where:

 ConnId: Connection identifier. See 6.1.2.

 KeypressType: Type of keypress reported to peer. See 8.1.6.

8.2.13 DmSecGenerateEccKeyReq()

This function is called to generate an ECC Key for use in LE Secure Connections. The application is

notified of the result of the generate ECC key operation via the DM_SEC_ECC_KEY_IND event.

Syntax:

void DmSecGenerateEccKeyReq(void)

8.2.14 DmSecSetEccKey()

This function is called to set the ECC key used in LE Secure Connections.

Syntax:

void DmSecSetEccKey(wsfSecEccKey_t *pKey)

Where:

 pKey: Pointer to the ECC key.

8.2.15 DmSecSetDebugEccKey()

This function is called to set the ECC key used in LE Secure Connections.

Syntax:

void DmSecSetDebugEccKey(void)

8.2.16 DmSecSetOob()

This function is called to set the Out of Band configuration containing the local and remote confirm and

random values for LE Secure Connections Security.

Syntax:

void DmSecSetOob(dmConnId_t connId, dmSecLescOobCfg_t *pConfig)

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 52

Confidential

Where:

 ConnId: Connection identifier. See 6.1.2.

 pConfig: The OOB configuration.

8.2.17 DmSecCalcOobReq()

This function is used to calculate the local confirm value used in Out of Band LE Secure Connections

Security.

Syntax:

void DmSecCalcOobReq(uint8_t *pRand, uint8_t *pPubKeyX)

Where:

 pRand: A 128-bit random value.

 pPubKeyX: The X component of the ECC public key.

8.2.18 DmSecCompareRsp()

This function is used to indicate the LE Secure Connections Numeric Comparison value is valid or

invalid. It is typically called in response to a DM_SEC_COMPARE_IND event.

Syntax:

void DmSecCompareRsp(dmConnId_t connId, bool_t valid)

Where:

 ConnId: Connection identifier. See 6.1.2.

 valid: TRUE if the compare value is correct, else FALSE.

8.3 Callback interface

8.3.1 DM_SEC_PAIR_CMPL_IND: Pairing complete

Callback event for pairing complete. This event uses type dmSecPairCmplIndEvt_t.

Table 38 Pairing complete

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t auth Authentication and bonding flags. See 8.1.1.

8.3.2 DM_SEC_PAIR_FAIL_IND: Pairing failed

Callback event for pairing failed. This event uses type wsfMsgHdr_t.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 53

Confidential

Table 39 Pairing failed

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

wsfMsgHdr_t hdr.status Pairing failure status. See 8.1.5.

8.3.3 DM_SEC_ENCRYPT_IND: Connection encrypted

Callback event for connection encrypted. This event uses type dmSecEncryptIndEvt_t.

Table 40 Connection encrypted

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

bool_t usingLtk TRUE if connection encrypted with LTK.

8.3.4 DM_SEC_ENCRYPT_FAIL_IND: Encryption failed

Callback event for encryption failed. This event uses type wsfMsgHdr_t.

Table 41 Encryption failed

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

wsfMsgHdr_t hdr.status Encryption failure status. See 8.1.5.

8.3.5 DM_SEC_AUTH_REQ_IND: Authentication requested

Callback event for PIN or OOB data requested for pairing. This event uses type

dmSecAuthReqIndEvt_t.

Table 42 Authentication requested

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

bool_t oob Out-of-band data requested.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 54

Confidential

bool_t display TRUE if PIN is to be displayed.

If OOB is TRUE, the client should call DmSecAuthRsp() with OOB data, if available. If display is

TRUE, the client will typically generate and display a random PIN and call DmSecAuthRsp() with this

PIN. If display is FALSE, the client will typically prompt the user to enter a PIN and call

DmSecAuthRsp() with this PIN.

8.3.6 DM_SEC_KEY_IND: Key data

Callback event for key data indication. This event uses data type dmSecKeyIndEvt_t.

Table 43 Key data

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

dmSecKey_t keyData Key data.

uint8_t type Key type. See 8.1.3.

uint8_t secLevel Security level of pairing when key was exchanged.

See 8.1.4.

uint8_t encKeyLen Length of encryption key used when data was

transferred.

8.3.7 DM_SEC_LTK_REQ_IND: LTK requested

Callback event for LTK requested. This event uses data type hciLeLtkReqEvt_t.

Table 44 LTK requested

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint16_t handle Connection handle

uint8_t randNum[HCI_RAND_LEN] Random number associated with key

uint16_t encDiversifier Encryption diversifier associated with key

8.3.8 DM_SEC_PAIR_IND: Incoming pairing request

Callback event for incoming pairing request. This event uses type dmSecPairIndEvt_t.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 55

Confidential

Table 45 Incoming pairing requested

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t auth Authentication and bonding flags. See 8.1.1.

bool_t oob Out-of-band pairing data present or not present.

uint8_t iKeyDist Initiator key distribution flags. See 8.1.2.

uint8_t rKeyDist Responder key distribution flags. See 8.1.2.

8.3.9 DM_SEC_SLAVE_REQ_IND: Incoming slave security request

Callback event for incoming slave security request. This event uses type dmSecPairIndEvt_t.

Table 46 Incoming slave security request

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t auth Authentication and bonding flags. See 8.1.1.

8.3.10 DM_SEC_CALC_OOB_IND: Out of band confirm

Callback with the result of an Out Of Band confirm calculation. This event uses type

dmSecOobCalcIndEvt_t.

Table 47 Out of band confirm

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.status Encryption failure status. See 8.1.5.

uint8_t confirm[SMP_CONFIRM_LEN] Local confirm value.

uint8_t random[SMP_RANDOM_LEN] Local random value.

8.3.11 DM_SEC_ECC_KEY_IND: ECC key generation

Callback with the result of an ECC Key generation. This event uses type wsfSecEccMsg_t.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 56

Confidential

Table 48 ECC key generation

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

wsfMsgHdr_t hdr.status Key generation status.

uint8_t pubKey_x

[WSF_ECC_KEY_LEN]

X component of the public key.

uint8_t pubKey_y

[WSF_ECC_KEY_LEN]

Y component of the public key.

uint8_t privKey[WSF_ECC_KEY_LEN] Private key.

8.3.12 DM_SEC_COMPARE_IND: Confirm comparison pairing

Callback with the confirm value during Numeric Comparison LE Secure Connections pairing. This

event uses type dmSecCnfIndEvt_t.

Table 49 Numeric comparison pairing

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t confirm[SMP_CONFIRM_LEN] Local confirm value.

8.3.13 DM_SEC_KEYPRESS_IND: Keypress from peer

Callback when peer receives a keypress command from the peer during LE Secure Connections

passkey pairing. This event uses type dmSecKeypressIndEvt_t.

Table 50 Keypress indication

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t notificationType Type of keypress.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 57

Confidential

9 Privacy

The DM Privacy interface is used by a master or slave device for private address resolution.

9.1 Function interface

9.1.1 DmPrivInit()

Initialize DM privacy module. This function is typically called once at system startup.

Syntax:

void DmPrivInit(void)

9.1.2 DmPrivResolveAddr()

Resolve a private resolvable address. When complete the client's callback function is called with a

DM_PRIV_RESOLVED_ADDR_IND event. The client must wait to receive this event before executing this

function again.

Syntax:

void DmPrivResolveAddr(uint8_t *pAddr, uint8_t *pIrk, uint16_t param)

Where:

 pAddr: Peer device address.

 pIrk: The peer's identity resolving key.

 Param: Client-defined parameter returned with callback event.

9.1.3 DmPrivAddDevToResList()

Add device to resolving list. When complete the client's callback function is called with a

DM_PRIV_ADD_DEV_TO_RES_LIST_IND event. The client must wait to receive this event before

executing this function again.

If the local or peer IRK associated with the peer Identity Address is all zeros then the LL will use or

accept the local or peer Identity Address.

Note: enableLlPriv should be set to TRUE when the last device is being added to resolving list.

Syntax:

void DmPrivAddDevToResList(uint8_t addrType, const uint8_t *pIdentityAddr,

uint8_t *pPeerIrk, uint8_t *pLocalIrk, bool_t enableLlPriv, uint16_t

param)

Where:

 addrType: Peer identity address type.

 pIdentityAddr: Peer identity address.

 pPeerIrk: The peer's identity resolving key.

 pLocalIrk: The local identity resolving key.

 enableLlPriv: Set to TRUE to enable address resolution in LL.

 param: Client-defined parameter returned with callback event.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 58

Confidential

9.1.4 DmPrivRemDevFromResList()

Remove device from resolving list. When complete the client's callback function is called with a

DM_PRIV_REM_DEV_FROM_RES_LIST_IND event. The client must wait to receive this event before

executing this function again.

Syntax:

void DmPrivRemDevFromResList(uint8_t addrType, const uint8_t *pIdentityAddr,

uint16_t param)

Where:

 addrTypePeer: Identity address type.

 pIdentityAddr: Peer identity address.

 param: Client-defined parameter returned with callback event.

9.1.5 DmPrivClearResList()

Clear resolving list. When complete the client's callback function is called with

DM_PRIV_CLEAR_RES_LIST_IND event. The client must wait to receive this event before executing this

function again.

Syntax:

void DmPrivClearResList(void)

9.1.6 DmPrivReadPeerResolvableAddr()

Read peer resolvable address. When complete the client's callback function is called with a

DM_PRIV_READ_PEER_RES_ADDR_IND event. The client must wait to receive this event before

executing this function again.

Syntax:

void DmPrivReadPeerResolvableAddr (uint8_t addrType, const uint8_t

*pIdentityAddr)

Where:

 addrTypePeer: Identity address type.

 pIdentityAddr: Peer identity address.

9.1.7 DmPrivReadLocalResolvableAddr ()

Read local resolvable address. When complete the client's callback function is called with a

DM_PRIV_READ_LOCAL_RES_ADDR_IND event. The client must wait to receive this event

before executing this function again.

Syntax:

void DmPrivReadLocalResolvableAddr (uint8_t addrType, const uint8_t

*pIdentityAddr)

Where:

 addrTypePeer: Identity address type.

 pIdentityAddr: Peer identity address.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 59

Confidential

9.1.8 DmPrivSetAddrResEnable()

Enable or disable address resolution in LL. When complete the client's callback function is called with

a DM_PRIV_SET_ADDR_RES_ENABLE_IND event. The client must wait to receive this event before

executing this function again.

Syntax:

void DmPrivSetAddrResEnable(bool_t enable)

Where:

 enable: Set to TRUE to enable address resolution or FALSE to disable it.

9.1.9 DmPrivSetResolvablePrivateAddrTimeout ()

Set resolvable private address timeout.

Syntax:

void DmPrivSetResolvablePrivateAddrTimeout (uint16_t rpaTimeout)

Where:

 rpaTimeout: Timeout measured in seconds.

9.2 Callback interface

9.2.1 DM_PRIV_RESOLVED_ADDR_IND: Private address resolved

Callback event for private address resolved. This event uses type wsfMsgHdr_t. If address resolution

is successful hdr.status is set to HCI_SUCCESS, otherwise it is set to HCI_ERR_AUTH_FAILURE.

Table 51 Private address resolved

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.status Status.

wsfMsgHdr_t hdr.param Client-defined parameter passed to

DmPrivResolveAddr().

9.2.2 DM_PRIV_ADD_DEV_TO_RES_LIST_IND: Device added to resolving list

Callback event for adding a device to the resolving list. This event uses type

hciLeAddDevToResListCmdCmplEvt_t.

Table 52 Device added to resolving list

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.status Status.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 60

Confidential

wsfMsgHdr_t hdr.param Client-defined parameter passed to

DmPrivAddDevToResList().

uint8_t status Command status

9.2.3 DM_PRIV_REM_DEV_FROM_RES_LIST_IND: Device removed from resolving list

Callback event for removing a device from the resolving list. This event uses type

hciLeRemDevFromResListCmdCmplEvt_t.

Table 53 Device removed from resolving list

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.status Status.

wsfMsgHdr_t hdr.param Client-defined parameter passed to

DmPrivRemDevToResList().

uint8_t status Command status

9.2.4 DM_PRIV_CLEAR_RES_LIST_IND: Resolving list cleared

Callback event for clearing the resolving list. This event uses type hciLeClearResListCmdCmplEvt_t.

Table 54 Resolving list cleared

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.status Status.

9.2.5 DM_PRIV_READ_PEER_RES_ADDR_IND: Peer resolving address read

Callback event for returning the peer resolving address. This event uses type

hciLeReadPeerResAddrCmdCmplEvt_t.

Table 55 Read peer resolving address

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.status Status.

uint8_t peerRpa[BDA_ADDR_LEN] Peer resolving address.

9.2.6 DM_PRIV_READ_LOCAL_RES_ADDR_IND: Local resolving address read

Callback event for returning the local resolving address. This event uses type

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 61

Confidential

hciLeReadLocalResAddrCmdCmplEvt_t.

Table 56 Read local resolving address

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.status Status.

uint8_t localRpa[BDA_ADDR_LEN] Local resolving address.

9.2.7 DM_PRIV_SET_ADDR_RES_ENABLE_IND: Address resolving enable set

Callback event for enabling address resolution. This event uses type

hciLeSetAddrResEnableCmdCmplEvt_t.

Table 57 Set address event

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.status Status.

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 62

Confidential

10 Scenarios

10.1 Advertising and scanning

Figure 1 shows a master device performing a scan and a slave device advertising. The slave

application first configures the advertising parameters by calling DmAdvSetInterval() to set the

advertising interval and then DmAdvSetData() twice to set the advertising data and the scan response

data. Then it calls DmAdvStart() to start advertising.

The master application configures the scan interval and then calls DmScanStart() to begin scanning.

When advertisements are received the stack sends DM_SCAN_REPORT_IND events to the application.

The master application stops scanning by calling DmScanStop(). The slave application stops

advertising by calling DmAdvStop().

Figure 1. Advertising and scanning.

10.2 Connection open and close

Figure 2 shows connection procedures between two devices. The scenario starts with the slave device

advertising and the master device already having the address of the slave. The master application calls

DmConnOpen() to initiate a connection. A connection is established and a DM_CONN_OPEN_IND is sent

to the application from the stack on each device.

Next, the master performs a connection update by calling DmConnUpdate(). When the connection

update is complete a DM_CONN_UPDATE_IND is sent to the application from the stack on each device.

Next, the slave closes the connection by calling DmConnClose(). A DM_CONN_CLOSE_IND event

is sent from the stack on each device when the connection is closed.

Application Stack (Master) Application Stack (Slave)

DmAdvSetInterval()

Advertising Started

DmAdvSetData()

DmAdvSetData()

DmAdvStart()

DM_ADV_START_IND Scanning Started

Scanning Stopped

Advertising Stopped

DmAdvStop()

DM_ADV_STOP_IND

DmScanStart()

DM_SCAN_START_IND

DmScanSetInterval()

DM_SCAN_REPORT_IND

DM_SCAN_REPORT_IND

DmScanStop()

DM_SCAN_STOP_IND

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 63

Confidential

Figure 2. Connection open and close.

10.3 Pairing

Figure 3 shows a pairing procedure between two devices. A connection is established between the two

devices and the master application initiates pairing by calling DmSecPairReq(). The slave application

receives a DM_SEC_PAIR_IND and calls DmSecPairRsp() to proceed with pairing. In this example a

PIN is used and a DM_SEC_AUTH_REQ_IND is sent to the application on each device to request a PIN.

Each application responds with the PIN by calling DmSecAuthRsp().

In the next phase of pairing the connection is encrypted and a DM_SEC_ENCRYPT_IND event is sent to the

application on each device. Then key exchange begins. According to the Bluetooth specification, the

slave device always distributes keys first. In this example, the slave distributes two keys and the master

device distributes one. The slave sends its key data to the master. Note that when the slave sends its

LTK, the slave application receives a DM_SEC_KEY_IND containing its own LTK. Then the master

sends its key data to the slave. When the key exchange is completed successfully, a

DM_SEC_PAIR_CMPL_IND event is sent to the application on each device.

Application Stack (Master) Application Stack (Slave)

Connection Update

Advertising Started

DmConnClose()

DM_CONN_OPEN_IND

DmConnOpen()

DM_CONN_OPEN_IND

DmConnUpdate()

DM_CONN_UPDATE_IND DM_CONN_UPDATE_IND

Connection Established

Connection Closed

DM_CONN_CLOSE_IND DM_CONN_CLOSE_IND

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 64

Confidential

Figure 3. Pairing

10.4 Encryption

Figure 4 shows an encryption procedure. In this example the slave device requests security by calling

DmSecSlaveReq() to sends a slave security request message to the master. The stack on the master

sends a DM_SEC_SLAVE_REQ_IND to the application. Upon receiving the event the master application

determines that this is a bonded device and its LTK is available, so it calls DmSecEncryptReq() to

enable encryption.

After the encryption procedure is initiated the slave application receives a DM_SEC_LTK_REQ_IND,

requesting the LTK used with this master device. The application finds the key and calls

DmSecLtkRsp(). The encryption procedure completes and a DM_SEC_ENCRYPT_IND event is sent to the

application on each device.

Application Stack (Master) Application Stack (Slave)

Pairing Request

DmSecPairRsp()

DmSecPairReq()

DM_SEC_AUTH_REQ_IND DM_SEC_AUTH_REQ_IND

Connection Established

Pairing Response

DM_SEC_PAIR_IND

DM_SEC_ENCRYPT_IND

DmSecAuthRsp() DmSecAuthRsp()

Connection Encrypted

DM_SEC_ENCRYPT_IND

Begin Key Exchange

DM_SEC_KEY_IND

DM_SEC_KEY_IND

DM_SEC_KEY_IND

Key Exchange Complete

DM_SEC_KEY_IND

DM_SEC_PAIR_CMPL_IND DM_SEC_PAIR_CMPL_IND

key data (LTK)

key data (IRK)

key data (IRK)

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 65

Confidential

Figure 4. Encryption

10.5 Privacy

Figure 5 shows a master device performing a scan and a slave device advertising with a private

resolvable address. Before a master device can resolve a slave’s address the devices must have paired

and the master must have received the slave’s IRK during pairing.

The slave application first enables use of a private resolvable address by calling DmAdvPrivStart(). If

this is the first time since device reset that DmAdvPrivStart() has been called, the application must

wait for a DM_ADV_NEW_ADDR_IND before it starts advertising. Then it calls DmAdvStart() to start

advertising.

The master application calls DmScanStart() to begin scanning. When advertisements are received the

stack sends DM_SCAN_REPORT_IND events to the application. The master application calls

DmPrivResolveAddr() with the address and address type from the scan report to resolve the address

with the IRK it had received previously.

After the slave application stops advertising it can call DmAdvPrivStop() to stop using a private

resolvable address.

Application Stack (Master) Application Stack (Slave)

Slave Security Request

DmSecSlaveReq()

DM_SEC_SLAVE_REQ_IND

DmSecEncryptReq()

DM_SEC_LTK_REQ_IND

Connection Established

Initiate Encryption

DM_SEC_ENCRYPT_IND DM_SEC_ENCRYPT_IND

DmSecLtkRsp()

Connection Encrypted

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 66

Confidential

Figure 5. Privacy

10.6 ECC key generation

An ECC Key must be stored in the Device Manager prior to use of LE Secure Connections pairing.

The Device Manager can generate an ECC, Elliptic Curve Cryptography, key, or the application can

store an ECC Key in Non-Volatile storage. An ECC key cannot be generated until after the Device

Manager reset is complete.

To generate an ECC Key, call the DmSecGenerateEccKeyReq() function after receiving the

DM_RESET_CMPL_IND event. The DM_SEC_ECC_KEY_IND event will be called after the ECC Key

generation is complete. The ECC Key can then be stored into the DM using the DmSecSetEccKey()

function.

Note: For some applications, it may be desirable to skip ECC Key Generation and store an ECC key in

Non Volatile storage. In these situations, the ECC key can be written to the Device Manager with

DmSecSetEccKey any time after the DM is reset, and before pairing begins.

Note: The Device Manager makes use of the WSF ECC subsystem to generate and validate ECC keys.

The WSF ECC subsystem may need to be ported to an application’s target hardware or software

framework for LE Secure Connections to operate properly.

The following figure shows the ECC Key generation scenario:

Application Stack (Master) Application Stack (Slave)

DmAdvPrivStart()

Advertising Started

DmAdvStart()

DM_ADV_START_IND Scanning Started

Advertising Stopped

DmAdvStop()

DM_ADV_STOP_IND

DmScanStart()

DM_SCAN_START_IND

DM_SCAN_REPORT_IND

DmPrivResolveAddr()

DM_PRIV_RESOLVED_ADDR_IND

DM_ADV_NEW_ADDR_IND

DmAdvPrivStop()

Devices Are Paired

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 67

Confidential

Figure 6: ECC key generation

10.7 Out of Band confirm calculation

When using Out-of-Band (OOB) LE Secure Connections pairing, devices must generate random and

confirm values. Furthermore, the devices must exchange random and confirm values through an out-

of-band mechanism. At which point, the local and peer random and confirm values must be stored in

the Device Manager prior to OOB pairing.

The OOB confirm calculation can be performed with DmSecCalcOobReq(), and requires an ECC,

Elliptic Curve Cryptography, key. Therefore, on receipt of the ECC key indication event,

DM_SEC_ECC_KEY_IND, an application may call the DmSecCalcOobReq() function to calculate an OOB

confirm value. The result of the confirm calculation will be returned via the DM_SEC_CALC_OOB_IND

event.

After an application exchanges random and confirm values via an out-of-band mechanism with a peer,

the application must store the local random and confirm values in the device manager. This can be

performed with the DmSecSetOob() function. This must happen prior to initiating LE Secure

Connections OOB Pairing.

The following figure shows the OOB confirm calculation scenario:

Application Stack

ECC Key Generated

DmSecGenerateEccKeyReq ()

DM_SCAN_START_IND

DM_SEC_ECC_KEY_IND

DmSecSetEccKey ()

DM_RESET_CMPL_IND

Device Manager API

Copyright  2009-2016 ARM. All rights reserved Page 68

Confidential

Figure 7: OOB confirm generation

Application Stack

OOB Exchange

DmSecCalcOobReq ()

DM_SEC_CALC_OOB_IND

DM_CONN_OPEN_IND

DmSecSetOob ()

DM_SEC_ECC_KEY_IND

