![]() |
Apollo Register Documentation v2.4.2
|
0x00000000: | CFG - Configuration Register |
0x00000004: | STAT - ADC Power Status |
0x00000008: | SWT - Software trigger |
0x0000000C: | SL0CFG - Slot 0 Configuration Register |
0x00000010: | SL1CFG - Slot 1 Configuration Register |
0x00000014: | SL2CFG - Slot 2 Configuration Register |
0x00000018: | SL3CFG - Slot 3 Configuration Register |
0x0000001C: | SL4CFG - Slot 4 Configuration Register |
0x00000020: | SL5CFG - Slot 5 Configuration Register |
0x00000024: | SL6CFG - Slot 6 Configuration Register |
0x00000028: | SL7CFG - Slot 7 Configuration Register |
0x0000002C: | WULIM - Window Comparator Upper Limits Register |
0x00000030: | WLLIM - Window Comparator Lower Limits Register |
0x00000038: | FIFO - FIFO Data and Valid Count Register |
0x00000200: | INTEN - ADC Interrupt registers: Enable |
0x00000204: | INTSTAT - ADC Interrupt registers: Status |
0x00000208: | INTCLR - ADC Interrupt registers: Clear |
0x0000020C: | INTSET - ADC Interrupt registers: Set |
Instance 0 Address: | 0x50008000 |
The ADC Configuration Register contains the software control for selecting the clock frequency used for the SAR conversions, the trigger polarity, the trigger select, the reference voltage select, the low power mode, the operating mode (single scan per trigger vs. repeating mode) and ADC enable.
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
CLKSEL
0x0 |
RSVD
0x0 |
TRIGPOL
0x0 |
TRIGSEL
0x0 |
RSVD
0x0 |
REFSEL
0x0 |
RSVD
0x0 |
CKMODE
0x0 |
LPMODE
0x0 |
RPTEN
0x0 |
RSVD
0x0 |
ADCEN
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:26 | RSVD | RO | RESERVED. |
25:24 | CLKSEL | RW | Select the source and frequency for the ADC clock. All values not enumerated below are undefined. OFF = 0x0 - Off mode. The HFRC or HFRC_DIV2 clock must be selected for the ADC to function. The ADC controller automatically shuts off the clock in it's low power modes. When setting ADCEN to '0', the CLKSEL should remain set to one of the two clock selects for proper power down sequencing. HFRC = 0x1 - HFRC Core Clock divided by (CORESEL+1) HFRC_DIV2 = 0x2 - HFRC Core Clock / 2 further divided by (CORESEL+1) |
23:20 | RSVD | RO | RESERVED. |
19 | TRIGPOL | RW | This bit selects the ADC trigger polarity for external off chip triggers. RISING_EDGE = 0x0 - Trigger on rising edge. FALLING_EDGE = 0x1 - Trigger on falling edge. |
18:16 | TRIGSEL | RW | Select the ADC trigger source. EXT0 = 0x0 - Off chip External Trigger0 (ADC_ET0) EXT1 = 0x1 - Off chip External Trigger1 (ADC_ET1) EXT2 = 0x2 - Off chip External Trigger2 (ADC_ET2) EXT3 = 0x3 - Off chip External Trigger3 (ADC_ET3) VCOMP = 0x4 - Voltage Comparator Output SWT = 0x7 - Software Trigger |
15:10 | RSVD | RO | RESERVED. |
9:8 | REFSEL | RW | Select the ADC reference voltage. INT2P0 = 0x0 - Internal 2.0V Bandgap Reference Voltage INT1P5 = 0x1 - Internal 1.5V Bandgap Reference Voltage EXT2P0 = 0x2 - Off Chip 2.0V Reference EXT1P5 = 0x3 - Off Chip 1.5V Reference |
7:5 | RSVD | RO | RESERVED. |
4 | CKMODE | RW | Clock mode register LPCKMODE = 0x0 - Disable the clock between scans for LPMODE0. Set LPCKMODE to 0x1 while configuring the ADC. LLCKMODE = 0x1 - Low Latency Clock Mode. When set, HFRC and the adc_clk will remain on while in functioning in LPMODE0. |
3 | LPMODE | RW | Select power mode to enter between active scans. MODE0 = 0x0 - Low Power Mode 0. Leaves the ADC fully powered between scans with minimum latency between a trigger event and sample data collection. MODE1 = 0x1 - Low Power Mode 1. Powers down all circuity and clocks associated with the ADC until the next trigger event. Between scans, the reference buffer requires up to 50us of delay from a scan trigger event before the conversion will commence while operating in this mode. |
2 | RPTEN | RW | This bit enables Repeating Scan Mode. SINGLE_SCAN = 0x0 - In Single Scan Mode, the ADC will complete a single scan upon each trigger event. REPEATING_SCAN = 0x1 - In Repeating Scan Mode, the ADC will complete it's first scan upon the initial trigger event and all subsequent scans will occur at regular intervals defined by the configuration programmed for the CTTMRA3 internal timer until the timer is disabled or the ADC is disabled. When disabling the ADC (setting ADCEN to '0'), the RPTEN bit should be cleared. |
1 | RSVD | RO | RESERVED. |
0 | ADCEN | RW | This bit enables the ADC module. While the ADC is enabled, the ADCCFG and SLOT Configuration regsiter settings must remain stable and unchanged. DIS = 0x0 - Disable the ADC module. EN = 0x1 - Enable the ADC module. |
Instance 0 Address: | 0x50008004 |
This register indicates the basic power status for the ADC. For detailed power status, see the power control power status register. ADC power mode 0 indicates the ADC is in it's full power state and is ready to process scans. ADC Power mode 1 indicates the ADC enabled and in a low power state.
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
PWDSTAT
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:1 | RSVD | RO | RESERVED. |
0 | PWDSTAT | RO | Indicates the power-status of the ADC. ON = 0x0 - Powered on. POWERED_DOWN = 0x1 - ADC Low Power Mode 1. |
Instance 0 Address: | 0x50008008 |
This register enables initiating an ADC scan through software.
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
SWT
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:8 | RSVD | RO | RESERVED. |
7:0 | SWT | RW | Writing 0x37 to this register generates a software trigger. GEN_SW_TRIGGER = 0x37 - Writing this value generates a software trigger. |
Instance 0 Address: | 0x5000800C |
Slot 0 Configuration Register
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
ADSEL0
0x0 |
RSVD
0x0 |
PRMODE0
0x0 |
RSVD
0x0 |
CHSEL0
0x0 |
RSVD
0x0 |
WCEN0
0x0 |
SLEN0
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:27 | RSVD | RO | RESERVED. |
26:24 | ADSEL0 | RW | Select the number of measurements to average in the accumulate divide module for this slot. AVG_1_MSRMT = 0x0 - Average in 1 measurement in the accumulate divide module for this slot. AVG_2_MSRMTS = 0x1 - Average in 2 measurements in the accumulate divide module for this slot. AVG_4_MSRMTS = 0x2 - Average in 4 measurements in the accumulate divide module for this slot. AVG_8_MSRMT = 0x3 - Average in 8 measurements in the accumulate divide module for this slot. AVG_16_MSRMTS = 0x4 - Average in 16 measurements in the accumulate divide module for this slot. AVG_32_MSRMTS = 0x5 - Average in 32 measurements in the accumulate divide module for this slot. AVG_64_MSRMTS = 0x6 - Average in 64 measurements in the accumulate divide module for this slot. AVG_128_MSRMTS = 0x7 - Average in 128 measurements in the accumulate divide module for this slot. |
23:18 | RSVD | RO | RESERVED. |
17:16 | PRMODE0 | RW | Set the Precision Mode For Slot. P14B = 0x0 - 14-bit precision mode P12B = 0x1 - 12-bit precision mode P10B = 0x2 - 10-bit precision mode P8B = 0x3 - 8-bit precision mode |
15:12 | RSVD | RO | RESERVED. |
11:8 | CHSEL0 | RW | Select one of the 14 channel inputs for this slot. SE0 = 0x0 - single ended external GPIO connection to pad16. SE1 = 0x1 - single ended external GPIO connection to pad29. SE2 = 0x2 - single ended external GPIO connection to pad11. SE3 = 0x3 - single ended external GPIO connection to pad31. SE4 = 0x4 - single ended external GPIO connection to pad32. SE5 = 0x5 - single ended external GPIO connection to pad33. SE6 = 0x6 - single ended external GPIO connection to pad34. SE7 = 0x7 - single ended external GPIO connection to pad35. SE8 = 0x8 - single ended external GPIO connection to pad13. SE9 = 0x9 - single ended external GPIO connection to pad12. DF0 = 0xA - differential external GPIO connections to pad12(N) and pad13(P). DF1 = 0xB - differential external GPIO connections to pad15(N) and pad14(P). TEMP = 0xC - internal temperature sensor. BATT = 0xD - internal voltage divide-by-3 connection. VSS = 0xE - VSS |
7:2 | RSVD | RO | RESERVED. |
1 | WCEN0 | RW | This bit enables the window compare function for slot 0. WCEN = 0x1 - Enable the window compare for slot 0. |
0 | SLEN0 | RW | This bit enables slot 0 for ADC conversions. SLEN = 0x1 - Enable slot 0 for ADC conversions. |
Instance 0 Address: | 0x50008010 |
Slot 1 Configuration Register
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
ADSEL1
0x0 |
RSVD
0x0 |
PRMODE1
0x0 |
RSVD
0x0 |
CHSEL1
0x0 |
RSVD
0x0 |
WCEN1
0x0 |
SLEN1
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:27 | RSVD | RO | RESERVED. |
26:24 | ADSEL1 | RW | Select the number of measurements to average in the accumulate divide module for this slot. AVG_1_MSRMT = 0x0 - Average in 1 measurement in the accumulate divide module for this slot. AVG_2_MSRMTS = 0x1 - Average in 2 measurements in the accumulate divide module for this slot. AVG_4_MSRMTS = 0x2 - Average in 4 measurements in the accumulate divide module for this slot. AVG_8_MSRMT = 0x3 - Average in 8 measurements in the accumulate divide module for this slot. AVG_16_MSRMTS = 0x4 - Average in 16 measurements in the accumulate divide module for this slot. AVG_32_MSRMTS = 0x5 - Average in 32 measurements in the accumulate divide module for this slot. AVG_64_MSRMTS = 0x6 - Average in 64 measurements in the accumulate divide module for this slot. AVG_128_MSRMTS = 0x7 - Average in 128 measurements in the accumulate divide module for this slot. |
23:18 | RSVD | RO | RESERVED. |
17:16 | PRMODE1 | RW | Set the Precision Mode For Slot. P14B = 0x0 - 14-bit precision mode P12B = 0x1 - 12-bit precision mode P10B = 0x2 - 10-bit precision mode P8B = 0x3 - 8-bit precision mode |
15:12 | RSVD | RO | RESERVED. |
11:8 | CHSEL1 | RW | Select one of the 14 channel inputs for this slot. SE0 = 0x0 - single ended external GPIO connection to pad16. SE1 = 0x1 - single ended external GPIO connection to pad29. SE2 = 0x2 - single ended external GPIO connection to pad11. SE3 = 0x3 - single ended external GPIO connection to pad31. SE4 = 0x4 - single ended external GPIO connection to pad32. SE5 = 0x5 - single ended external GPIO connection to pad33. SE6 = 0x6 - single ended external GPIO connection to pad34. SE7 = 0x7 - single ended external GPIO connection to pad35. SE8 = 0x8 - single ended external GPIO connection to pad13. SE9 = 0x9 - single ended external GPIO connection to pad12. DF0 = 0xA - differential external GPIO connections to pad12(N) and pad13(P). DF1 = 0xB - differential external GPIO connections to pad15(N) and pad14(P). TEMP = 0xC - internal temperature sensor. BATT = 0xD - internal voltage divide-by-3 connection. VSS = 0xE - VSS |
7:2 | RSVD | RO | RESERVED. |
1 | WCEN1 | RW | This bit enables the window compare function for slot 1. WCEN = 0x1 - Enable the window compare for slot 1. |
0 | SLEN1 | RW | This bit enables slot 1 for ADC conversions. SLEN = 0x1 - Enable slot 1 for ADC conversions. |
Instance 0 Address: | 0x50008014 |
Slot 2 Configuration Register
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
ADSEL2
0x0 |
RSVD
0x0 |
PRMODE2
0x0 |
RSVD
0x0 |
CHSEL2
0x0 |
RSVD
0x0 |
WCEN2
0x0 |
SLEN2
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:27 | RSVD | RO | RESERVED. |
26:24 | ADSEL2 | RW | Select the number of measurements to average in the accumulate divide module for this slot. AVG_1_MSRMT = 0x0 - Average in 1 measurement in the accumulate divide module for this slot. AVG_2_MSRMTS = 0x1 - Average in 2 measurements in the accumulate divide module for this slot. AVG_4_MSRMTS = 0x2 - Average in 4 measurements in the accumulate divide module for this slot. AVG_8_MSRMT = 0x3 - Average in 8 measurements in the accumulate divide module for this slot. AVG_16_MSRMTS = 0x4 - Average in 16 measurements in the accumulate divide module for this slot. AVG_32_MSRMTS = 0x5 - Average in 32 measurements in the accumulate divide module for this slot. AVG_64_MSRMTS = 0x6 - Average in 64 measurements in the accumulate divide module for this slot. AVG_128_MSRMTS = 0x7 - Average in 128 measurements in the accumulate divide module for this slot. |
23:18 | RSVD | RO | RESERVED. |
17:16 | PRMODE2 | RW | Set the Precision Mode For Slot. P14B = 0x0 - 14-bit precision mode P12B = 0x1 - 12-bit precision mode P10B = 0x2 - 10-bit precision mode P8B = 0x3 - 8-bit precision mode |
15:12 | RSVD | RO | RESERVED. |
11:8 | CHSEL2 | RW | Select one of the 14 channel inputs for this slot. SE0 = 0x0 - single ended external GPIO connection to pad16. SE1 = 0x1 - single ended external GPIO connection to pad29. SE2 = 0x2 - single ended external GPIO connection to pad11. SE3 = 0x3 - single ended external GPIO connection to pad31. SE4 = 0x4 - single ended external GPIO connection to pad32. SE5 = 0x5 - single ended external GPIO connection to pad33. SE6 = 0x6 - single ended external GPIO connection to pad34. SE7 = 0x7 - single ended external GPIO connection to pad35. SE8 = 0x8 - single ended external GPIO connection to pad13. SE9 = 0x9 - single ended external GPIO connection to pad12. DF0 = 0xA - differential external GPIO connections to pad12(N) and pad13(P). DF1 = 0xB - differential external GPIO connections to pad15(N) and pad14(P). TEMP = 0xC - internal temperature sensor. BATT = 0xD - internal voltage divide-by-3 connection. VSS = 0xE - VSS |
7:2 | RSVD | RO | RESERVED. |
1 | WCEN2 | RW | This bit enables the window compare function for slot 2. WCEN = 0x1 - Enable the window compare for slot 2. |
0 | SLEN2 | RW | This bit enables slot 2 for ADC conversions. SLEN = 0x1 - Enable slot 2 for ADC conversions. |
Instance 0 Address: | 0x50008018 |
Slot 3 Configuration Register
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
ADSEL3
0x0 |
RSVD
0x0 |
PRMODE3
0x0 |
RSVD
0x0 |
CHSEL3
0x0 |
RSVD
0x0 |
WCEN3
0x0 |
SLEN3
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:27 | RSVD | RO | RESERVED. |
26:24 | ADSEL3 | RW | Select the number of measurements to average in the accumulate divide module for this slot. AVG_1_MSRMT = 0x0 - Average in 1 measurement in the accumulate divide module for this slot. AVG_2_MSRMTS = 0x1 - Average in 2 measurements in the accumulate divide module for this slot. AVG_4_MSRMTS = 0x2 - Average in 4 measurements in the accumulate divide module for this slot. AVG_8_MSRMT = 0x3 - Average in 8 measurements in the accumulate divide module for this slot. AVG_16_MSRMTS = 0x4 - Average in 16 measurements in the accumulate divide module for this slot. AVG_32_MSRMTS = 0x5 - Average in 32 measurements in the accumulate divide module for this slot. AVG_64_MSRMTS = 0x6 - Average in 64 measurements in the accumulate divide module for this slot. AVG_128_MSRMTS = 0x7 - Average in 128 measurements in the accumulate divide module for this slot. |
23:18 | RSVD | RO | RESERVED. |
17:16 | PRMODE3 | RW | Set the Precision Mode For Slot. P14B = 0x0 - 14-bit precision mode P12B = 0x1 - 12-bit precision mode P10B = 0x2 - 10-bit precision mode P8B = 0x3 - 8-bit precision mode |
15:12 | RSVD | RO | RESERVED. |
11:8 | CHSEL3 | RW | Select one of the 14 channel inputs for this slot. SE0 = 0x0 - single ended external GPIO connection to pad16. SE1 = 0x1 - single ended external GPIO connection to pad29. SE2 = 0x2 - single ended external GPIO connection to pad11. SE3 = 0x3 - single ended external GPIO connection to pad31. SE4 = 0x4 - single ended external GPIO connection to pad32. SE5 = 0x5 - single ended external GPIO connection to pad33. SE6 = 0x6 - single ended external GPIO connection to pad34. SE7 = 0x7 - single ended external GPIO connection to pad35. SE8 = 0x8 - single ended external GPIO connection to pad13. SE9 = 0x9 - single ended external GPIO connection to pad12. DF0 = 0xA - differential external GPIO connections to pad12(N) and pad13(P). DF1 = 0xB - differential external GPIO connections to pad15(N) and pad14(P). TEMP = 0xC - internal temperature sensor. BATT = 0xD - internal voltage divide-by-3 connection. VSS = 0xE - VSS |
7:2 | RSVD | RO | RESERVED. |
1 | WCEN3 | RW | This bit enables the window compare function for slot 3. WCEN = 0x1 - Enable the window compare for slot 3. |
0 | SLEN3 | RW | This bit enables slot 3 for ADC conversions. SLEN = 0x1 - Enable slot 3 for ADC conversions. |
Instance 0 Address: | 0x5000801C |
Slot 4 Configuration Register
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
ADSEL4
0x0 |
RSVD
0x0 |
PRMODE4
0x0 |
RSVD
0x0 |
CHSEL4
0x0 |
RSVD
0x0 |
WCEN4
0x0 |
SLEN4
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:27 | RSVD | RO | RESERVED. |
26:24 | ADSEL4 | RW | Select the number of measurements to average in the accumulate divide module for this slot. AVG_1_MSRMT = 0x0 - Average in 1 measurement in the accumulate divide module for this slot. AVG_2_MSRMTS = 0x1 - Average in 2 measurements in the accumulate divide module for this slot. AVG_4_MSRMTS = 0x2 - Average in 4 measurements in the accumulate divide module for this slot. AVG_8_MSRMT = 0x3 - Average in 8 measurements in the accumulate divide module for this slot. AVG_16_MSRMTS = 0x4 - Average in 16 measurements in the accumulate divide module for this slot. AVG_32_MSRMTS = 0x5 - Average in 32 measurements in the accumulate divide module for this slot. AVG_64_MSRMTS = 0x6 - Average in 64 measurements in the accumulate divide module for this slot. AVG_128_MSRMTS = 0x7 - Average in 128 measurements in the accumulate divide module for this slot. |
23:18 | RSVD | RO | RESERVED. |
17:16 | PRMODE4 | RW | Set the Precision Mode For Slot. P14B = 0x0 - 14-bit precision mode P12B = 0x1 - 12-bit precision mode P10B = 0x2 - 10-bit precision mode P8B = 0x3 - 8-bit precision mode |
15:12 | RSVD | RO | RESERVED. |
11:8 | CHSEL4 | RW | Select one of the 14 channel inputs for this slot. SE0 = 0x0 - single ended external GPIO connection to pad16. SE1 = 0x1 - single ended external GPIO connection to pad29. SE2 = 0x2 - single ended external GPIO connection to pad11. SE3 = 0x3 - single ended external GPIO connection to pad31. SE4 = 0x4 - single ended external GPIO connection to pad32. SE5 = 0x5 - single ended external GPIO connection to pad33. SE6 = 0x6 - single ended external GPIO connection to pad34. SE7 = 0x7 - single ended external GPIO connection to pad35. SE8 = 0x8 - single ended external GPIO connection to pad13. SE9 = 0x9 - single ended external GPIO connection to pad12. DF0 = 0xA - differential external GPIO connections to pad12(N) and pad13(P). DF1 = 0xB - differential external GPIO connections to pad15(N) and pad14(P). TEMP = 0xC - internal temperature sensor. BATT = 0xD - internal voltage divide-by-3 connection. VSS = 0xE - VSS |
7:2 | RSVD | RO | RESERVED. |
1 | WCEN4 | RW | This bit enables the window compare function for slot 4. WCEN = 0x1 - Enable the window compare for slot 4. |
0 | SLEN4 | RW | This bit enables slot 4 for ADC conversions. SLEN = 0x1 - Enable slot 4 for ADC conversions. |
Instance 0 Address: | 0x50008020 |
Slot 5 Configuration Register
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
ADSEL5
0x0 |
RSVD
0x0 |
PRMODE5
0x0 |
RSVD
0x0 |
CHSEL5
0x0 |
RSVD
0x0 |
WCEN5
0x0 |
SLEN5
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:27 | RSVD | RO | RESERVED. |
26:24 | ADSEL5 | RW | Select number of measurements to average in the accumulate divide module for this slot. AVG_1_MSRMT = 0x0 - Average in 1 measurement in the accumulate divide module for this slot. AVG_2_MSRMTS = 0x1 - Average in 2 measurements in the accumulate divide module for this slot. AVG_4_MSRMTS = 0x2 - Average in 4 measurements in the accumulate divide module for this slot. AVG_8_MSRMT = 0x3 - Average in 8 measurements in the accumulate divide module for this slot. AVG_16_MSRMTS = 0x4 - Average in 16 measurements in the accumulate divide module for this slot. AVG_32_MSRMTS = 0x5 - Average in 32 measurements in the accumulate divide module for this slot. AVG_64_MSRMTS = 0x6 - Average in 64 measurements in the accumulate divide module for this slot. AVG_128_MSRMTS = 0x7 - Average in 128 measurements in the accumulate divide module for this slot. |
23:18 | RSVD | RO | RESERVED. |
17:16 | PRMODE5 | RW | Set the Precision Mode For Slot. P14B = 0x0 - 14-bit precision mode P12B = 0x1 - 12-bit precision mode P10B = 0x2 - 10-bit precision mode P8B = 0x3 - 8-bit precision mode |
15:12 | RSVD | RO | RESERVED. |
11:8 | CHSEL5 | RW | Select one of the 14 channel inputs for this slot. SE0 = 0x0 - single ended external GPIO connection to pad16. SE1 = 0x1 - single ended external GPIO connection to pad29. SE2 = 0x2 - single ended external GPIO connection to pad11. SE3 = 0x3 - single ended external GPIO connection to pad31. SE4 = 0x4 - single ended external GPIO connection to pad32. SE5 = 0x5 - single ended external GPIO connection to pad33. SE6 = 0x6 - single ended external GPIO connection to pad34. SE7 = 0x7 - single ended external GPIO connection to pad35. SE8 = 0x8 - single ended external GPIO connection to pad13. SE9 = 0x9 - single ended external GPIO connection to pad12. DF0 = 0xA - differential external GPIO connections to pad12(N) and pad13(P). DF1 = 0xB - differential external GPIO connections to pad15(N) and pad14(P). TEMP = 0xC - internal temperature sensor. BATT = 0xD - internal voltage divide-by-3 connection. VSS = 0xE - VSS |
7:2 | RSVD | RO | RESERVED. |
1 | WCEN5 | RW | This bit enables the window compare function for slot 5. WCEN = 0x1 - Enable the window compare for slot 5. |
0 | SLEN5 | RW | This bit enables slot 5 for ADC conversions. SLEN = 0x1 - Enable slot 5 for ADC conversions. |
Instance 0 Address: | 0x50008024 |
Slot 6 Configuration Register
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
ADSEL6
0x0 |
RSVD
0x0 |
PRMODE6
0x0 |
RSVD
0x0 |
CHSEL6
0x0 |
RSVD
0x0 |
WCEN6
0x0 |
SLEN6
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:27 | RSVD | RO | RESERVED. |
26:24 | ADSEL6 | RW | Select the number of measurements to average in the accumulate divide module for this slot. AVG_1_MSRMT = 0x0 - Average in 1 measurement in the accumulate divide module for this slot. AVG_2_MSRMTS = 0x1 - Average in 2 measurements in the accumulate divide module for this slot. AVG_4_MSRMTS = 0x2 - Average in 4 measurements in the accumulate divide module for this slot. AVG_8_MSRMT = 0x3 - Average in 8 measurements in the accumulate divide module for this slot. AVG_16_MSRMTS = 0x4 - Average in 16 measurements in the accumulate divide module for this slot. AVG_32_MSRMTS = 0x5 - Average in 32 measurements in the accumulate divide module for this slot. AVG_64_MSRMTS = 0x6 - Average in 64 measurements in the accumulate divide module for this slot. AVG_128_MSRMTS = 0x7 - Average in 128 measurements in the accumulate divide module for this slot. |
23:18 | RSVD | RO | RESERVED. |
17:16 | PRMODE6 | RW | Set the Precision Mode For Slot. P14B = 0x0 - 14-bit precision mode P12B = 0x1 - 12-bit precision mode P10B = 0x2 - 10-bit precision mode P8B = 0x3 - 8-bit precision mode |
15:12 | RSVD | RO | RESERVED. |
11:8 | CHSEL6 | RW | Select one of the 14 channel inputs for this slot. SE0 = 0x0 - single ended external GPIO connection to pad16. SE1 = 0x1 - single ended external GPIO connection to pad29. SE2 = 0x2 - single ended external GPIO connection to pad11. SE3 = 0x3 - single ended external GPIO connection to pad31. SE4 = 0x4 - single ended external GPIO connection to pad32. SE5 = 0x5 - single ended external GPIO connection to pad33. SE6 = 0x6 - single ended external GPIO connection to pad34. SE7 = 0x7 - single ended external GPIO connection to pad35. SE8 = 0x8 - single ended external GPIO connection to pad13. SE9 = 0x9 - single ended external GPIO connection to pad12. DF0 = 0xA - differential external GPIO connections to pad12(N) and pad13(P). DF1 = 0xB - differential external GPIO connections to pad15(N) and pad14(P). TEMP = 0xC - internal temperature sensor. BATT = 0xD - internal voltage divide-by-3 connection. VSS = 0xE - VSS |
7:2 | RSVD | RO | RESERVED. |
1 | WCEN6 | RW | This bit enables the window compare function for slot 6. WCEN = 0x1 - Enable the window compare for slot 6. |
0 | SLEN6 | RW | This bit enables slot 6 for ADC conversions. SLEN = 0x1 - Enable slot 6 for ADC conversions. |
Instance 0 Address: | 0x50008028 |
Slot 7 Configuration Register
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
ADSEL7
0x0 |
RSVD
0x0 |
PRMODE7
0x0 |
RSVD
0x0 |
CHSEL7
0x0 |
RSVD
0x0 |
WCEN7
0x0 |
SLEN7
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:27 | RSVD | RO | RESERVED. |
26:24 | ADSEL7 | RW | Select the number of measurements to average in the accumulate divide module for this slot. AVG_1_MSRMT = 0x0 - Average in 1 measurement in the accumulate divide module for this slot. AVG_2_MSRMTS = 0x1 - Average in 2 measurements in the accumulate divide module for this slot. AVG_4_MSRMTS = 0x2 - Average in 4 measurements in the accumulate divide module for this slot. AVG_8_MSRMT = 0x3 - Average in 8 measurements in the accumulate divide module for this slot. AVG_16_MSRMTS = 0x4 - Average in 16 measurements in the accumulate divide module for this slot. AVG_32_MSRMTS = 0x5 - Average in 32 measurements in the accumulate divide module for this slot. AVG_64_MSRMTS = 0x6 - Average in 64 measurements in the accumulate divide module for this slot. AVG_128_MSRMTS = 0x7 - Average in 128 measurements in the accumulate divide module for this slot. |
23:18 | RSVD | RO | RESERVED. |
17:16 | PRMODE7 | RW | Set the Precision Mode For Slot. P14B = 0x0 - 14-bit precision mode P12B = 0x1 - 12-bit precision mode P10B = 0x2 - 10-bit precision mode P8B = 0x3 - 8-bit precision mode |
15:12 | RSVD | RO | RESERVED. |
11:8 | CHSEL7 | RW | Select one of the 14 channel inputs for this slot. SE0 = 0x0 - single ended external GPIO connection to pad16. SE1 = 0x1 - single ended external GPIO connection to pad29. SE2 = 0x2 - single ended external GPIO connection to pad11. SE3 = 0x3 - single ended external GPIO connection to pad31. SE4 = 0x4 - single ended external GPIO connection to pad32. SE5 = 0x5 - single ended external GPIO connection to pad33. SE6 = 0x6 - single ended external GPIO connection to pad34. SE7 = 0x7 - single ended external GPIO connection to pad35. SE8 = 0x8 - single ended external GPIO connection to pad13. SE9 = 0x9 - single ended external GPIO connection to pad12. DF0 = 0xA - differential external GPIO connections to pad12(N) and pad13(P). DF1 = 0xB - differential external GPIO connections to pad15(N) and pad14(P). TEMP = 0xC - internal temperature sensor. BATT = 0xD - internal voltage divide-by-3 connection. VSS = 0xE - VSS |
7:2 | RSVD | RO | RESERVED. |
1 | WCEN7 | RW | This bit enables the window compare function for slot 7. WCEN = 0x1 - Enable the window compare for slot 7. |
0 | SLEN7 | RW | This bit enables slot 7 for ADC conversions. SLEN = 0x1 - Enable slot 7 for ADC conversions. |
Instance 0 Address: | 0x5000802C |
Window Comparator Upper Limits Register
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
ULIM
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:20 | RSVD | RO | RESERVED. |
19:0 | ULIM | RW | Sets the upper limit for the wondow comparator. |
Instance 0 Address: | 0x50008030 |
Window Comparator Lower Limits Register
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
LLIM
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:20 | RSVD | RO | RESERVED. |
19:0 | LLIM | RW | Sets the lower limit for the wondow comparator. |
Instance 0 Address: | 0x50008038 |
The ADC FIFO Register contains the slot number and fifo data for the oldest conversion data in the FIFO. The COUNT field indicates the total number of valid entries in the FIFO. A write to this register will pop one of the FIFO entries off the FIFO and decrease the COUNT by 1 if the COUNT is greater than zero.
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
SLOTNUM
0x0 |
COUNT
0x0 |
DATA
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31 | RSVD | RO | RESERVED. |
30:28 | SLOTNUM | RO | Slot number associated with this FIFO data. |
27:20 | COUNT | RO | Number of valid entries in the ADC FIFO. |
19:0 | DATA | RO | Oldest data in the FIFO. |
Instance 0 Address: | 0x50008200 |
Set bits in this register to allow this module to generate the corresponding interrupt.
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
WCINC
0x0 |
WCEXC
0x0 |
FIFOOVR2
0x0 |
FIFOOVR1
0x0 |
SCNCMP
0x0 |
CNVCMP
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:6 | RSVD | RO | RESERVED. |
5 | WCINC | RW | Window comparator voltage incursion interrupt. WCINCINT = 0x1 - Window comparitor voltage incursion interrupt. |
4 | WCEXC | RW | Window comparator voltage excursion interrupt. WCEXCINT = 0x1 - Window comparitor voltage excursion interrupt. |
3 | FIFOOVR2 | RW | FIFO 100% full interrupt. FIFOFULLINT = 0x1 - FIFO 100% full interrupt. |
2 | FIFOOVR1 | RW | FIFO 75% full interrupt. FIFO75INT = 0x1 - FIFO 75% full interrupt. |
1 | SCNCMP | RW | ADC scan complete interrupt. SCNCMPINT = 0x1 - ADC scan complete interrupt. |
0 | CNVCMP | RW | ADC conversion complete interrupt. CNVCMPINT = 0x1 - ADC conversion complete interrupt. |
Instance 0 Address: | 0x50008204 |
Read bits from this register to discover the cause of a recent interrupt.
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
WCINC
0x0 |
WCEXC
0x0 |
FIFOOVR2
0x0 |
FIFOOVR1
0x0 |
SCNCMP
0x0 |
CNVCMP
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:6 | RSVD | RO | RESERVED. |
5 | WCINC | RW | Window comparator voltage incursion interrupt. WCINCINT = 0x1 - Window comparitor voltage incursion interrupt. |
4 | WCEXC | RW | Window comparator voltage excursion interrupt. WCEXCINT = 0x1 - Window comparitor voltage excursion interrupt. |
3 | FIFOOVR2 | RW | FIFO 100% full interrupt. FIFOFULLINT = 0x1 - FIFO 100% full interrupt. |
2 | FIFOOVR1 | RW | FIFO 75% full interrupt. FIFO75INT = 0x1 - FIFO 75% full interrupt. |
1 | SCNCMP | RW | ADC scan complete interrupt. SCNCMPINT = 0x1 - ADC scan complete interrupt. |
0 | CNVCMP | RW | ADC conversion complete interrupt. CNVCMPINT = 0x1 - ADC conversion complete interrupt. |
Instance 0 Address: | 0x50008208 |
Write a 1 to a bit in this register to clear the interrupt status associated with that bit.
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
WCINC
0x0 |
WCEXC
0x0 |
FIFOOVR2
0x0 |
FIFOOVR1
0x0 |
SCNCMP
0x0 |
CNVCMP
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:6 | RSVD | RO | RESERVED. |
5 | WCINC | RW | Window comparator voltage incursion interrupt. WCINCINT = 0x1 - Window comparitor voltage incursion interrupt. |
4 | WCEXC | RW | Window comparator voltage excursion interrupt. WCEXCINT = 0x1 - Window comparitor voltage excursion interrupt. |
3 | FIFOOVR2 | RW | FIFO 100% full interrupt. FIFOFULLINT = 0x1 - FIFO 100% full interrupt. |
2 | FIFOOVR1 | RW | FIFO 75% full interrupt. FIFO75INT = 0x1 - FIFO 75% full interrupt. |
1 | SCNCMP | RW | ADC scan complete interrupt. SCNCMPINT = 0x1 - ADC scan complete interrupt. |
0 | CNVCMP | RW | ADC conversion complete interrupt. CNVCMPINT = 0x1 - ADC conversion complete interrupt. |
Instance 0 Address: | 0x5000820C |
Write a 1 to a bit in this register to instantly generate an interrupt from this module. (Generally used for testing purposes).
//
// All macro-based register writes follow the same basic format. For
// single-instance modules, you may use the simpler AM_REG macro. For
// multi-instance macros, you will need to specify the instance number using
// the AM_REGn macro format.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
// AM_REGn(<MODULE>, <INSTANCE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>_<VALUE>;
//
// For registers that do not have specific enumeration values, you may use this alternate format instead.
//
// AM_REG(<MODULE>, <REGISTER>) |= AM_REG_<MODULE>_<REGISTER>_<FIELD>(<NUMBER>);
//
// For example, the following three lines of code are equivalent methods of
// writing the value for 12MHZ to the CLKSEL field in the ADC_CFG register.
//
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REGn(ADC, 0, CFG) |= AM_REG_ADC_CFG_CLKSEL_12MHZ;
AM_REG(ADC, CFG) |= AM_REG_ADC_CFG_CLKSEL(0x1);
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSVD
0x0 |
WCINC
0x0 |
WCEXC
0x0 |
FIFOOVR2
0x0 |
FIFOOVR1
0x0 |
SCNCMP
0x0 |
CNVCMP
0x0 |
Bits | Name | RW | Description |
---|---|---|---|
31:6 | RSVD | RO | RESERVED. |
5 | WCINC | RW | Window comparator voltage incursion interrupt. WCINCINT = 0x1 - Window comparitor voltage incursion interrupt. |
4 | WCEXC | RW | Window comparator voltage excursion interrupt. WCEXCINT = 0x1 - Window comparitor voltage excursion interrupt. |
3 | FIFOOVR2 | RW | FIFO 100% full interrupt. FIFOFULLINT = 0x1 - FIFO 100% full interrupt. |
2 | FIFOOVR1 | RW | FIFO 75% full interrupt. FIFO75INT = 0x1 - FIFO 75% full interrupt. |
1 | SCNCMP | RW | ADC scan complete interrupt. SCNCMPINT = 0x1 - ADC scan complete interrupt. |
0 | CNVCMP | RW | ADC conversion complete interrupt. CNVCMPINT = 0x1 - ADC conversion complete interrupt. |