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1 Preface 

This preface introduces the Wireless Software Foundation API Reference Manual.  

1.1 About this book 

This document describes the Wireless Software Foundation (WSF) API and lists the API functions and 

their parameters. 

1.1.1 Intended audience 

This book is written for experienced software engineers who might or might not have experience with 

ARM products. Such engineers typically have experience of writing Bluetooth applications but might 

have limited experience of the Cordio software stack. 

It is also assumed that the readers have access to all necessary tools. 

1.1.2 Using this book 

This book is organized into the following chapters: 

 Introduction 

Read this for an overview of the API. 

 Portable Data Types 

Read this for a list of data types used in the API. 

 Buffers 

Read this for a description of the buffer service functions. 

 Queues 

Read this for a description of the queue service functions. 

 Messages 

Read this for a description of the message service used to pass messages to WSF event 

functions. 

 Timers 

Read this for a description of the timer service functions. 

 Event Handlers 

Read this for a description of the WSF event handlers receive events, message, and timer 

expirations from other components in the service. 

 Critical Sections 

Read this for a description of the critical section macros used in code which might be executed 

in an interrupt context. 

 Task Schedule Locking 

Read this for a description of the interfaces for locking and unlocking task scheduling. 

 Assert 

Read this for a description of the macros used for testing and debugging. 

 Trace 

Read this for a description of the trace macros used for trace diagnostics. 

 Security 

Read this for a description of the security service functions. 

 Revisions 

Read this chapter for descriptions of the changes between document versions.  
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1.1.3 Terms and abbreviations 

For a list of ARM terms, see the ARM glossary.  

Terms specific to the Cordio software are listed below: 

Term Description 

ACL Asynchronous Connectionless data packet 

AD Advertising Data 

ARQ Automatic Repeat reQuest 

ATT Attribute Protocol, also attribute protocol software subsystem 

ATTC Attribute Protocol Client software subsystem 

ATTS Attribute Protocol Server software subsystem 

CCC or CCCD Client Characteristic Configuration Descriptor 

CID Connection Identifier 

CSRK Connection Signature Resolving Key 

DM Device Manager software subsystem 

GAP Generic Access Profile 

GATT Generic Attribute Profile 

HCI Host Controller Interface 

IRK Identity Resolving Key 

JIT Just In Time 

L2C L2CAP software subsystem 

L2CAP Logical Link Control Adaptation Protocol 

LE (Bluetooth) Low Energy 

LL Link Layer 

LLPC Link Layer Control Protocol 

LTK Long Term Key 

MITM Man In The Middle pairing (authenticated pairing) 

OOB Out Of Band data 

SMP Security Manager Protocol, also security manager protocol software subsystem 

SMPI Security Manager Protocol Initiator software subsystem 

SMPR Security Manager Protocol Responder software subsystem 

STK Short Term Key 

WSF Wireless Software Foundation software service and porting layer. 

 

  

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html
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1.1.4 Conventions 

The following table describes the typographical conventions:  

Typographical conventions  

Style Purpose 

Italic Introduces special terminology, denotes cross-references, and 

citations.  

bold Highlights interface elements, such as menu names. Denotes 

signal names. Also used for terms in descriptive lists, where 

appropriate. 

MONOSPACE Denotes text that you can enter at the keyboard, such as 

commands, file and program names, and source code. 

MONOSPACE Denotes a permitted abbreviation for a command or option. You 

can enter the underlined text instead of the full command or option 

name. 

monospace italic Denotes arguments to monospace text where the argument is to be 

replaced by a specific value. 

monospace bold  Denotes language keywords when used outside example code. 

<and> Encloses replaceable terms for assembler syntax where they 

appear in code or code fragments. For example: 

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2> 

SMALL CAPITALS Used in body text for a few terms that have specific technical 

meanings, that are defined in the ARM
®

 Glossary. For example, 

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, 

and UNPREDICTABLE. 

1.1.5 Additional reading 

This section lists publications by ARM and by third parties. 

See Infocenter for access to ARM documentation. 

Other publications 

This section lists relevant documents published by third parties:  

 Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015. 

 

1.2 Feedback 

ARM welcomes feedback on this product and its documentation. 

http://infocenter.arm.com/
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1.2.1 Feedback on content 

If you have comments on content then send an e-mail to errata@arm.com. Give:  

 The title.  

 The number, ARM-EPM-115156.  

 The page numbers to which your comments apply.  

 A concise explanation of your comments. 

 

ARM also welcomes general suggestions for additions and improvements. 

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the 

quality of the represented document when used with any other PDF reader.
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2 Introduction 

This document describes the Wireless Software Foundation (WSF) API.   

WSF is a simple OS wrapper, porting layer, and general-purpose software service used by the Cordio 

embedded software system.   

The goal of WSF is to stay small and lean, supporting only the basic services required by the system.  It 

consists of the following: 

 Event handler service with event and message passing. 

 Timer service. 

 Queue and buffer management service. 

 Portable data types. 

 Critical sections and task locking. 

 Trace and assert diagnostic services. 

 Security interfaces for encryption and random number generation. 

WSF does not define any tasks but defines some interfaces to tasks.  It relies on the target OS to 

implement tasks and manage the timer and event handler services from target OS tasks.  WSF can also 

act as a simple standalone OS in software systems without an existing OS. 
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3 Portable Data Types 

WSF defines the following portable data types in file wsf_types.h.  These data types are used 

throughout the software system. 

Table 1 Integer types 

Name Description 

int8_t 8 bit signed integer 

uint8_t 8 bit unsigned integer 

int16_t 16 bit signed integer 

uint16_t 16 bit unsigned integer 

int32_t 32 bit signed integer 

uint32_t 32 bit unsigned integer 

uint64_t 64 bit unsigned integer 

bool_t Boolean integer 
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4 Buffers 

The WSF buffer management service is a pool-based dynamic memory allocation service.  The buffer 

service interface is defined in file wsf_buf.h. 

4.1 Data Types 

4.1.1 wsfBufPoolDesc_t 

This is buffer pool descriptor structure.  It is used by function WsfBufInit(). 

 

Type Name Description 

uint16_t len Length of buffers in pool. 

uint8_t num Number of buffers in pool. 

 

4.2 Functions 

4.2.1 WsfBufInit() 

Initialize the buffer pool service.  This function should only be called once upon system initialization. 

Syntax: 

uint16_t WsfBufInit(uint16_t bufMemLen, uint8_t *pBufMem, uint8_t numPools, 

wsfBufPoolDesc_t *pDesc) 

Where: 

 bufMemLen:  Length in bytes of memory pointed to by pBufMem. 

 pBufMem:  Memory in which to store the pools used by the buffer pool service. 

 numPools:  Number of buffer pools. 

 pDesc:  Array of buffer pool descriptors, one for each pool 

This function returns the amount of pBufMem used or 0 for failures. 

4.2.2 WsfBufAlloc() 

Allocate a buffer.  

Syntax: 

void *WsfBufAlloc(uint16_t len) 

Where: 

 len:  Length of buffer to allocate. 

This function returns a pointer to the buffer or NULL if allocation fails. 

4.2.3 WsfBufFree() 

Free a buffer. 
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Syntax: 

void WsfBufFree(void *pBuf) 

Where: 

 pBuf:  Buffer to free. 

4.3 Diagnostic Macros 

The following macros are used for diagnostic purposes. 

Table 2 Diagnostic macros 

Name Value Description 

WSF_BUF_FREE_CHECK TRUE, 

FALSE 

Assert if trying to free a buffer that is already free. 

WSF_BUF_ALLOC_FAIL_ASSERT TRUE, 

FALSE 

Set to TRUE to assert on buffer allocation failure. 

WSF_BUF_STATS TRUE, 

FALSE 

Set to TRUE to collect buffer allocation statistics. 

 

4.4 Diagnostic Functions 

4.4.1 WsfBufGetMaxAlloc() 

Diagnostic function to get maximum allocated buffers from a pool. 

Syntax: 

uint8_t WsfBufGetMaxAlloc(uint8_t pool) 

Where: 

 pool:  Buffer pool number. 

This function returns the number of allocated buffers. 

4.4.2 WsfBufGetNumAlloc() 

Diagnostic function to get the number of currently allocated buffers in a pool. 

Syntax: 

uint8_t WsfBufGetNumAlloc(uint8_t pool) 

Where: 

 pool:  Buffer pool number. 

This function returns the number of allocated buffers. 

4.4.3 WsfBufGetAllocStats() 

Diagnostic function to get the buffer allocation statistics.   
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The statistics contain a count of each call to WsfBufAlloc() for the requested buffer length.   

Syntax: 

uint8_t *WsfBufGetAllocStats(void) 

The function returns a 128-byte array indexed by the length passed to WsfBufAlloc() with each 

element containing the total number of calls to WsfBufAlloc() for that length. 

4.4.4 WsfBufGetPolStats() 

Get statistics for each pool. 

Syntax: 

uint8_t WsfBufGetPolStats(WsfBufPoolStat_t *pStat, uint8_t numPool) 

Where: 

 pStat:  Buffer to store statistics. 

 numPool:  Number of pool elements. 

This function returns the pool statistics in variable pStat. 
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5 Queues 

The WSF queue service is a general purpose queue service that is used throughout the software system.  

The queue service interface is defined in function wsf_queue.h. 

5.1 Data Types 

5.1.1 wsfQueue_t 

Table 3 Queue data structure 

Type Name Description 

void * pHead Head of queue. 

void * pTail Tail of queue. 

 

5.2 Functions 

5.2.1 WSF_QUEUE_INIT() 

This macro initializes a queue structure. 

Syntax: 

WSF_QUEUE_INIT(pQueue) 

Where: 

 pBuf:  Pointer to queue. 

5.2.2 WsfQueueEnq() 

Enqueue an element to the tail of a queue. 

Syntax: 

void WsfQueueEnq(wsfQueue_t *pQueue, void *pElem) 

Where: 

 pQueue:  Pointer to queue. 

 pElem:  Pointer to element. 

5.2.3 WsfQueueDeq() 

Dequeue an element from the head of a queue. 

Syntax: 

void *WsfQueueDeq(wsfQueue_t *pQueue) 

Where: 

 pQueue:  Pointer to queue. 
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This function returns a pointer to the element that has been dequeued or NULL if the queue is empty. 

5.2.4 WsfQueuePush() 

Push an element to the head of a queue. 

Syntax: 

void WsfQueuePush(wsfQueue_t *pQueue, void *pElem) 

Where: 

 pQueue:  Pointer to queue. 

 pElem:  Pointer to element. 

5.2.5 WsfQueueInsert() 

Insert an element into a queue.   

This function is typically used when iterating over a queue. 

Syntax: 

void WsfQueueInsert(wsfQueue_t *pQueue, void *pElem, void *pPrev) 

Where: 

 pQueue:  Pointer to queue. 

 pElem:  Pointer to element to be inserted. 

 pPrev:  Pointer to previous element in the queue before element to be inserted.   

Note:  set pPrev to NULL if pElem is first element in queue. 

5.2.6 WsfQueueRemove() 

Remove an element from a queue.  This function is typically used when iterating over a queue. 

Syntax: 

void WsfQueueRemove(wsfQueue_t *pQueue, void *pElem, void *pPrev) 

Where: 

 pQueue:  Pointer to queue. 

 pElem:  Pointer to element to be inserted. 

 pPrev:  Pointer to previous element in the queue before element to be removed. 

5.2.7 WsfQueueCount() 

Count the number of elements in a queue. 

Syntax: 

uint16_t WsfQueueCount(wsfQueue_t *pQueue) 

Where: 

 pQueue:  Pointer to queue. 
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This function returns the number of elements in the queue. 

5.2.8 WsfQueueEmpty() 

Test if queue is empty. 

Syntax: 

bool_t WsfQueueEmpty(wsfQueue_t *pQueue) 

Where: 

 pQueue:  Pointer to queue. 

This function returns TRUE if queue is empty, FALSE otherwise. 
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6 Messages 

The WSF message service is used to pass messages to WSF event handlers.   

The WSF message service is defined in file wsf_msg.h. 

6.1 Functions 

6.1.1 WsfMsgAlloc() 

Allocate a message buffer to be sent with WsfMsgSend(). 

Syntax: 

void *WsfMsgAlloc(uint16_t len) 

Where: 

 len:  Message length in bytes. 

This function returns a pointer to the message buffer or NULL if allocation failed. 

6.1.2 WsfMsgFree() 

Free a message buffer allocated with WsfMsgAlloc(). 

Syntax: 

void WsfMsgFree(void *pMsg) 

Where: 

 pMsg:  Pointer to message buffer. 

6.1.3 WsfMsgSend() 

Send a message to an event handler. 

Syntax: 

void WsfMsgSend(wsfHandlerId_t handlerId, void *pMsg) 

Where: 

 handlerId:  Event handler ID. 

 pMsg:  Pointer to message buffer. 

6.1.4 WsfMsgEnq() 

Enqueue a message. 

Syntax: 

void WsfMsgEnq(wsfQueue_t *pQueue, wsfHandlerId_t handlerId, void *pMsg) 

Where: 

 pQueue:  Pointer to queue. 
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 handerId:  Set message handler ID to this value. 

 pElem:  Pointer to message buffer. 

6.1.5 WsfMsgDeq() 

Dequeue a message. 

Syntax: 

void *WsfMsgDeq(wsfQueue_t *pQueue, wsfHandlerId_t *pHandlerId) 

Where: 

 pQueue:  Pointer to queue. 

 pHandlerId:  Handler ID of returned message; this is a return parameter. 

This function returns a pointer to the message that has been dequeued or NULL if the queue is empty. 

6.1.6 WsfMsgPeek () 

Get the next message without removing it from the queue. 

Syntax: 

void *WsfMsgPeek (wsfQueue_t *pQueue, wsfHandlerId_t *pHandlerId) 

Where: 

 pQueue:  Pointer to queue. 

 pHandlerId:  Handler ID of returned message; this is a return parameter. 

This function returns a pointer to the next message on the queue or NULL if the queue is empty. 
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7 Timers 

The WSF timer service is used by WSF event handlers.   

When a timer expires, the event handler associated with that timer is executed. 

7.1 Data Types 

This section describe the timer data types. 

7.1.1 wsfTimer_t 

Table 4 Timer data structure. 

Type Name Description 

wsfTimer_t * pNext Pointer to next timer in queue. 

wsfTimerTicks_t ticks Number of ticks until expiration. 

wsfHandlerId_t handlerId Event handler for this timer. 

bool_t isStarted TRUE if timer has been started. 

wsfMsgHdr_t msg Application-defined timer event parameters. 

 

7.2 Functions 

This section describe the timer functions. 

7.2.1 WsfTimerInit() 

Initialize the timer service.  This function should only be called once upon system initialization. 

Syntax: 

void WsfTimerInit (void) 

7.2.2 WsfTimerStartSec() 

Start a timer in units of seconds.   

Before this function is called parameter pTimer->handlerId must be set to the event handler for this 

timer and parameter pTimer->msg must be set to any application-defined timer event parameters. 

Syntax: 

void WsfTimerStartSec(wsfTimer_t *pTimer, wsfTimerTicks_t sec) 

Where: 

 pTimer:  Pointer to timer. 

 sec:  Seconds until expiration. 
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7.2.3 WsfTimerStartMs() 

Start a timer in units of milliseconds. 

Syntax: 

void WsfTimerStartMs(wsfTimer_t *pTimer, wsfTimerTicks_t ms) 

Where: 

 pTimer:  Pointer to timer. 

 ms:  Milliseconds until expiration. 

7.2.4 WsfTimerStop() 

Stop a timer. 

Syntax: 

void WsfTimerStop(wsfTimer_t *pTimer) 

Where: 

 pTimer:  Pointer to timer. 

7.2.5 WsfTimerUpdate() 

Update the timer service with the number of elapsed ticks.   

This function is typically called only from WSF timer porting code. 

Syntax: 

void WsfTimerUpdate(wsfTimerTicks_t ticks) 

Where: 

 ticks:  Number of ticks since last update. 

7.2.6 WsfTimerNextExpiration() 

Return the number of ticks until the next timer expiration.   

Note: This function can return zero even if a timer is running, indicating the timer has expired but has 

not yet been serviced. 

Syntax: 

wsfTimerTicks_t WsfTimerNextExpiration(bool_t *pTimerRunning) 

Where: 

 pTimerRunning:  Returns TRUE if a timer is running, FALSE if no timers running. 

This function returns the number of ticks until the next timer expiration. 

7.2.7 WsfTimerServiceExpired() 

Service expired timers for the given task.   
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This function is typically called only from WSF OS porting code. 

Syntax: 

wsfTimer_t *WsfTimerServiceExpired(wsfTaskId_t taskId) 

Where: 

 taskId:  OS Task ID of task servicing timers. 

This function returns a pointer to next expired timer or NULL if there are no expired timers. 
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8 Event Handlers 

WSF event handlers receive WSF events, messages, and timer expirations from other components in 

the software system.  Event handlers are used by the main protocol subsystems of the stack.   

The event handler interface is defined in file wsf_os.h. 

8.1 Data Types 

This section describe the event handler data types. 

8.1.1 wsfMsgHdr_t 

This is the common message structure passed to event handlers. 

Table 5 Event handler message 

Type Name Description 

uint16_t param General purpose parameter passed to event handler. 

uint8_t event General purpose event value passed to event handler. 

uint8_t status General purpose status value passed to event handler. 

 

8.2 Functions 

This section describe the event handler functions. 

8.2.1 (*wsfEventHandler_t)() 

This is the data type for event handler callback functions. 

Syntax: 

void (*wsfEventHandler_t)(wsfEventMask_t event, wsfMsgHdr_t *pMsg) 

Where: 

 event:  Mask of events set for the event handler. 

 pMsg:  Pointer to message for the event handler. 

8.2.2 WsfSetEvent() 

Set an event to an event handler. 

Syntax: 

void WsfSetEvent(wsfHandlerId_t handlerId, wsfEventMask_t event) 

Where: 

 handlerId:  Handler ID. 

 event:  Event or events to set. 
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8.2.3 WsfOsSetNextHandler() 

Set the next WSF handler function in the WSF OS handler array.   

This function should only be called as part of the OS initialization procedure. 

Syntax: 

wsfHandlerId_t WsfOsSetNextHandler(wsfEventHandler_t handler) 

Where: 

 handler:  WSF handler function. 

This function returns the WSF handler ID for this handler. 
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9 Critical Sections 

WSF provides critical section macros that are used in code which might be executed in interrupt 

context to protect global data.  The critical section interface is defined in file wsf_cs.h. 

9.1 Macros 

This section describe the macros. 

9.1.1 WSF_CS_INIT() 

Initialize critical section.  This macro may define a variable. 

Syntax: 

WSF_CS_INIT(cs) 

Where: 

 cs:  Critical section variable to be defined. 

9.1.2 WSF_CS_ENTER() 

Enter a critical section. 

Syntax: 

WSF_CS_ENTER(cs) 

Where: 

 cs:  Critical section variable. 

9.1.3 WSF_CS_EXIT() 

Exit a critical section. 

Syntax: 

WSF_CS_EXIT(cs) 

Where: 

 cs:  Critical section variable. 
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10 Task Schedule Locking 

WSF provides interfaces for locking and unlocking task scheduling.  This allows for operation in pre-

emptive multi-tasking environments.  The task schedule locking interface is defined in file wsf_os.h. 

10.1 Functions 

This section describe the task schedule functions. 

10.1.1 WsfTaskLock() 

Lock task scheduling. 

Syntax: 

void WsfTaskLock(void) 

10.1.2 WsfTaskUnlock() 

Unlock task scheduling. 

Syntax: 

void WsfTaskUnlock(void) 
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11 Assert 

WSF defines assert macros that are used for testing and debugging purposes.  The assert interface is 

defined in file wsf_assert.h. 

11.1 Macros 

This section describe the assert macros. 

11.1.1 WSF_ASSERT() 

Run-time assert macro.  The assert executes when the expression is FALSE. 

Syntax: 

WSF_ASSERT(expr) 

Where: 

 expr:  Boolean expression to be tested. 

11.1.2 WSF_CT_ASSERT() 

Compile-time assert macro.  This macro causes a compiler error when the expression is FALSE.  Note 

that this macro is generally used at file scope to test constant expressions.   

Errors may result if it is used in executing code. 

Syntax: 

WSF_CT_ASSERT(expr) 

Where: 

• expr:  Boolean expression to be tested. 
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12 Trace 

WSF defines trace macros that are used throughout the software system for diagnostic purposes.  A 

separate set of trace macros is used for each software subsystem (for example, WSF, HCI, DM, and 

ATT).  This allows trace messages to be compiled in/out for each subsystem.  Within each set of 

subsystem trace macros there are separate macros for different types of trace messages: 

 INFO:  Informational messages. 

 WARN:  Warning messages. 

 ERR:  Error messages. 

 ALLOC:  Memory or other resource is allocated. 

 FREE:  Memory or other resource is freed. 

 MSG:  WSF event handler message is sent. 
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13 Security 

WSF provides interfaces to encryption and random number generation algorithms.  These algorithms 

are used by the stack to perform various Bluetooth LE security procedures. 

13.1 Data Types 

This section describe the security data types. 

13.1.1 wsfSecMsg_t 

Table 6 AES security callback parameters structure 

Type Name Description 

wsfMsgHdr_t hdr Message header. 

uint8_t *pCiphertext Pointer to 16 bytes of ciphertext data. 

 

13.1.2 wsfSecEccKey_t 

Table 7 ECC Security callback parameters structure 

Type Name Description 

uint8_t pubKey_x[WSF_ECC_KEY_LEN] Public key X. 

uint8_t pubKey_y[WSF_ECC_KEY_LEN] Public key Y. 

uint8_t privKey[WSF_ECC_KEY_LEN] Private key. 

 

13.1.3 wsfSecEccSharedSec_t 

Table 8 ECC shared secret structure 

Type Name Description 

uint8_t secret[WSF_ECC_KEY_LEN] Shared secret. 

 

13.1.4 wsfSecEccMsg_t 

Table 9 ECC Security callback parameters structure 

Type Name Description 

wsfSecEccSharedSec_t sharedSecret Shared secret. 

wsfSecEccKey_t key ECC key structure. 

 

13.2 Functions 

This section describe the security functions. 



Wireless Software Foundation API  

Copyright  2015, 2016 ARM. All rights reserved.  Page 34 

Confidential 

13.2.1 WsfSecInit() 

Initialize the security service.   

This function should only be called once upon system initialization. 

Syntax: 

void WsfSecInit(void) 

13.2.2 WsfSecRandInit() 

Initialize the random number service.   

This function should only be called once upon system initialization. 

Syntax: 

void WsfSecRandInit(void) 

13.2.3 WsfSecAesInit() 

Initialize the AES service.   

This function should only be called once upon system initialization. 

Syntax: 

void WsfSecAesInit (void) 

13.2.4 WsfSecCmacInit() 

Called to initialize CMAC security.   

This function should only be called once upon system initialization. 

Syntax: 

void WsfSecCmacInit (void) 

13.2.5 WsfSecEccInit() 

Called to initialize ECC security.   

This function should only be called once upon system initialization. 

Syntax: 

void WsfSecEccInit(void) 

13.2.6 WsfSecAes() 

Execute an AES calculation.   

When the calculation completes, a WSF message will be sent to the specified handler.   

Syntax: 

uint8_t WsfSecAes(uint8_t *pKey, uint8_t *pPlaintext, wsfHandlerId_t handlerId, 

uint16_t param, uint8_t event) 
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Where: 

 pKey:  Pointer to 16 byte key. 

 pPlaintext:  Pointer to 16 byte plaintext. 

 handlerId:  WSF handler ID. 

 param:  Client-defined parameter returned in message. 

 event:  Event for client's WSF handler. 

This function returns a token value that the client can use to match calls to this function with messages. 

13.2.7 WsfSecCmac() 

Execute the CMAC algorithm. 

Syntax: 

uint8_t WsfSecCmac(const uint8_t *pKey, uint8_t *pPlaintext, uint8_t textLen, 

wsfHandlerId_t handlerId, uint16_t param, uint8_t event) 

Where: 

 pKeyKey:  used in CMAC operation. 

 pPlaintext:  Data to perform CMAC operation over 

 len:  Size of pPlaintext in bytes. 

 handlerId:  WSF handler ID for client. 

 param:  Optional parameter sent to client's WSF handler. 

 event:  Event for client's WSF handler. 

This function returns TRUE if successful, FALSE otherwise. 

13.2.8 WsfSecEccGenKey() 

Generate an ECC key. 

Syntax: 

uint8_t WsfSecEccGenKey(wsfHandlerId_t handlerId, uint16_t param, uint8_t event) 

Where: 

 handlerId:  WSF handler ID for client. 

 param:  Optional parameter sent to client's WSF handler. 

 event:  Event for client's WSF handler. 

This function returns TRUE if successful, FALSE otherwise. 

13.2.9 WsfSecEccGenSharedSecret() 

Generate an ECC shared secret from the input ECC keys. 

Syntax: 

uint8_t WsfSecEccGenSharedSecret(wsfSecEccKey_t *pKey, wsfHandlerId_t handlerId, 

uint16_t param, uint8_t event) 

Where: 

 pKey:  ECC Key structure. 
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 handlerId:  WSF handler ID for client. 

 param:  Optional parameter sent to client's WSF handler. 

 event:  Event for client's WSF handler. 

This function returns TRUE if successful, FALSE otherwise. 

13.2.10 WsfSecRand() 

This function returns up to 16 bytes of random data to a buffer provided by the client. 

Syntax: 

void WsfSecRand(uint8_t *pRand, uint8_t randLen) 

Where: 

 pRand:  Pointer to returned random data. 

 randLen:  Length of random data. 

 


