
Copyright  2011-2016 ARM. All rights reserved. Page 1

Confidential

ARM® Cordio Profiles

ARM-EPM-115883 1.0

App Framework API

Confidential

Copyright  2011-2016 ARM. All rights reserved. Page 2

Confidential

ARM® Cordio App Framework API

Reference Manual
Copyright © 2011-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change

25 September 2015
-

Confidential
First Wicentric release for 1.1 as

2011-0020

1 March 2016 A Confidential First ARM release for 1.1

24 August 2016 A Confidential AUSPEX # / API update

Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the information contained in this

document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any

form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to

any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the

information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology

or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or

creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for

publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this

document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,

SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE

DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or

understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,

HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS

DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this

document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,

directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to

create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without

notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this

document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This

document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version

of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or

elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.

Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2011-2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

Copyright  2011-2016 ARM. All rights reserved. Page 3

Confidential

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status
This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with

the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 4

Confidential

Contents

ARM® Cordio Profiles 1

1 Preface 11

1.1 About this book 11

1.1.1 Intended audience 11

1.1.2 Using this book 11

1.1.3 Terms and abbreviations 11

1.1.4 Conventions 12

1.1.5 Additional reading 13

1.2 Feedback 13

1.2.1 Feedback on content 13

2 Introduction 14

2.1 Overview 14

2.2 Modules 14

3 Main Interface 15

3.1 Constants and Data Types 15

3.1.1 Discoverable/connectable mode 15

3.1.2 Advertising and scan data storage locations 15

3.1.3 Service discovery and configuration client status 15

3.1.5 Actions for incoming requests 16

3.1.7 appAdvCfg_t 16

3.1.8 appExtAdvCfg_t 16

3.1.9 appSlaveCfg_t 16

3.1.10 appMasterCfg_t 17

3.1.11 appSecCfg_t 17

3.1.12 appUpdateCfg_t 17

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 5

Confidential

3.1.13 appReqActCfg_t 18

3.1.14 appDiscCfg_t 18

3.1.15 appCfg_t 18

3.1.16 appDevInfo_t 18

3.2 Global Variables 19

3.2.1 pAppAdvCfg 19

3.2.2 pAppExtAdvCfg 19

3.2.3 pAppSlaveCfg 19

3.2.4 pAppMasterCfg 19

3.2.5 pAppSecCfg 19

3.2.6 pAppUpdateCfg 19

3.2.7 pAppDiscCfg 19

3.2.8 pAppCfg 19

3.2.9 pAppMasterReqActCfg 19

3.2.10 pAppSlaveReqActCfg 19

3.3 Initialization Functions 19

3.3.1 AppSlaveInit() 19

3.3.2 AppMasterInit() 20

3.4 Advertising Functions 20

3.4.1 AppAdvSetData() 20

3.4.2 AppAdvStart() 20

3.4.3 AppAdvStop() 20

3.4.4 AppAdvSetAdValue() 21

3.4.5 AppSlaveIsAdvertising() 21

1.3 Advertising Extensions 21

3.4.6 AppExtAdvSetData() 22

3.4.7 AppExtAdvStart() 22

3.4.8 AppExtAdvStop() 22

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 6

Confidential

3.4.9 AppExtAdvSetAdValue() 22

3.5 Scanning Functions 23

3.5.1 AppScanStart() 23

3.5.2 AppScanStop() 23

3.5.3 *AppScanGetResult() 23

3.5.4 AppScanGetNumResults() 24

3.6 Connection and Security Functions 24

3.6.1 AppConnClose() 24

3.6.2 AppConnIsOpen() 24

3.6.3 AppHandlePasskey() 24

3.6.4 AppSetBondable() 25

3.6.5 AppSlaveSecurityReq() 25

3.6.6 AppConnAccept() 25

3.6.7 AppExtConnAccept() 25

3.6.8 AppMasterSecurityReq() 26

3.7 Discovery Functions 26

3.7.1 AppDiscInit() 26

3.7.2 AppDiscRegister() 26

3.7.3 AppDiscSetHdlList() 26

3.7.4 AppDiscComplete() 26

3.7.5 AppDiscFindService() 27

3.7.6 AppDiscConfigure() 27

3.7.7 AppDiscServiceChanged() 28

3.7.8 AppDiscProcDmMsg() 28

3.7.9 AppDiscProcAttMsg() 28

3.8 Message Processing Functions 28

3.8.1 AppSlaveProcDmMsg() 28

3.8.2 AppSlaveSecProcDmMsg() 28

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 7

Confidential

3.8.3 AppMasterProcDmMsg() 29

3.8.4 AppMasterSecProcDmMsg() 29

3.8.5 AppServerConnCback() 29

3.9 Callback Interface 29

3.9.1 (*appDiscCback_t)() 29

4 DB Interface 30

4.1 Constants and Data Types 30

4.1.1 appDbHdl_t 30

4.1.2 APP_DB_HDL_NONE 30

4.2 Functions 30

4.2.1 AppDbInit() 30

4.2.2 AppDbNewRecord() 30

4.2.3 AppDbDeleteRecord() 30

4.2.4 AppDbValidateRecord() 31

4.2.5 AppDbCheckValidRecord() 31

4.2.6 AppDbCheckBonded() 31

4.2.7 AppDbDeleteAllRecords() 31

4.2.8 AppDbFindByAddr() 31

4.2.9 AppDbFindByLtkReq() 32

4.2.10 AppDbGetHdl() 32

4.2.11 *AppDbGetKey() 32

4.2.12 AppDbSetKey() 32

4.2.13 *AppDbGetCccTbl() 33

4.2.14 AppDbSetCccTblValue() 33

4.2.15 AppDbGetDiscStatus() 33

4.2.16 AppDbSetDiscStatus() 33

4.2.17 AppDbGetHdlList() 34

4.2.18 AppDbSetHdlList() 34

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 8

Confidential

4.2.19 *AppDbGetDevName() 34

4.2.20 AppDbSetDevName() 34

5 UI Interface 34

5.1 Constants and Data Types 35

5.1.1 UI event enumeration 35

5.1.2 Button press enumeration 35

5.1.3 LED values 36

5.1.4 Sound tone values 36

5.1.5 appUiSound_t 37

5.1.6 appUiLed_t 37

5.2 Functions 37

5.2.1 AppUiAction() 37

5.2.2 AppUiDisplayPasskey() 37

5.2.3 AppUiDisplayRssi() 38

5.2.4 AppUiBtnRegister() 38

5.2.5 AppUiSoundPlay() 38

5.2.6 AppUiSoundStop() 38

5.2.7 AppUiLedStart() 38

5.2.8 AppUiLedStop() 39

5.3 Callback Interface 39

5.3.1 (*appUiBtnCback_t)() 39

6 HW Interface 39

6.1 Constants and Data Types 39

6.1.1 appHrm_t 39

6.1.2 appDateTime_t 39

6.1.3 appBpm_t 40

6.1.4 appWsm_t 40

6.1.5 appTm_t 41

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 9

Confidential

6.1.6 appPlxCm_t 41

6.1.7 appPlxScm_t 41

6.2 Functions 42

6.2.1 AppHwBattRead() 42

6.2.2 AppHwHrmRead() 42

6.2.3 AppHwBpmRead() 42

6.2.4 AppHwWsmRead() 43

6.2.5 AppHwTmRead() 43

6.2.6 AppHwTmSetUnits () 43

6.2.7 AppHwPlxcmRead() 44

6.2.8 AppHwPlxscmRead() 44

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 11

Confidential

1 Preface
This preface introduces the Cordio Application Framework API Reference Manual.

1.1 About this book

This document describes the Cordio Application Framework API and lists the API functions and their

parameters.

1.1.1 Intended audience

This book is written for experienced software engineers who might or might not have experience with

ARM products. Such engineers typically have experience of writing Bluetooth applications but might

have limited experience of the Cordio software stack.

It is also assumed that the readers have access to all necessary tools.

1.1.2 Using this book

This book is organized into the following chapters:

 Introduction

Read this for an overview of the API.

 Main Interface

Read this for a description of the main interface.

 DB Interface

Read this for a description of the device database interface.

 UI Interface

Read this for a description of the UI interface API functions.

 HW Interface

Read this for a description of hardware interface API functions.

1.1.3 Terms and abbreviations

For a list of ARM terms, see the ARM glossary.

Terms specific to the Cordio software are listed below:

Term Description

ACL Asynchronous Connectionless data packet

AD Advertising Data

AE Advertising Extensions

ARQ Automatic Repeat reQuest

ATT Attribute Protocol, also attribute protocol software subsystem

ATTC Attribute Protocol Client software subsystem

ATTS Attribute Protocol Server software subsystem

CCC or CCCD Client Characteristic Configuration Descriptor

CID Connection Identifier

CSRK Connection Signature Resolving Key

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 12

Confidential

DM Device Manager software subsystem

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JIT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

OOB Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem

SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.

1.1.4 Conventions

The following table describes the typographical conventions:

Typographical conventions

Style Purpose

Italic Introduces special terminology, denotes cross-references, and

citations.

bold Highlights interface elements, such as menu names. Denotes

signal names. Also used for terms in descriptive lists, where

appropriate.

MONOSPACE Denotes text that you can enter at the keyboard, such as

commands, file and program names, and source code.

MONOSPACE Denotes a permitted abbreviation for a command or option. You

can enter the underlined text instead of the full command or option

name.

monospace italic Denotes arguments to monospace text where the argument is to be

replaced by a specific value.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 13

Confidential

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they

appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical

meanings, that are defined in the ARM
®

 Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,

and UNPREDICTABLE.

1.1.5 Additional reading

This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

 Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

1.2.1 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

 The title.

 The number, ARM-EPM-115157.

 The page numbers to which your comments apply.

 A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the

quality of the represented document when used with any other PDF reader.

http://infocenter.arm.com/

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 14

Confidential

2 Introduction
This document describes the API of the App Framework subsystem. The App Framework is a service

layer for applications that simplifies application development.

2.1 Overview
The App Framework performs many operations common to Bluetooth LE embedded applications, such

as:

 Application-level device, connection, and security management.

 Simple user interface abstractions for button press handling, sounds, display, and other user

feedback.

 An abstracted device database for storing bonding data and other device parameters.

The relationship between the App Framework, the application, and the protocol stack is shown in

Figure 1.

Figure 1. App Framework software system diagram.

2.2 Modules

The App Framework consists of several modules, each with their own API interface file.

Table 1 API modules

Module Interface file Description

Main app_api.h Device, connection, and security management.

UI app_ui.h User interface abstraction.

DB app_db.h Device database.

HW app_hw.h Hardware sensor interface abstraction.

The Main module is designed to be platform-independent while the UI and DB modules are designed

with platform-independent APIs and platform-specific implementations.

Application

App Framework

Protocol Stack

Main UI DB HW

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 15

Confidential

3 Main Interface

3.1 Constants and Data Types

3.1.1 Discoverable/connectable mode

Discoverable/connectable mode used by function AppAdvStart().

Table 2 Discoverable/connectable mode

Name Description

APP_MODE_CONNECTABLE Connectable mode.

APP_MODE_DISCOVERABLE Discoverable mode.

APP_MODE_AUTO_INIT Automatically configure mode based on bonding

info.

3.1.2 Advertising and scan data storage locations

Advertising and scan data storage locations.

Table 3 Advertising and scan data storage locations

Name Description

APP_ADV_DATA_CONNECTABLE Advertising data for connectable mode.

APP_SCAN_DATA_CONNECTABLE Scan data for connectable mode.

APP_ADV_DATA_DISCOVERABLE Advertising data for discoverable mode.

APP_SCAN_DATA_DISCOVERABLE Scan data for discoverable mode.

3.1.3 Service discovery and configuration client status

Service discovery and configuration client status.

3.1.4 Table 4 Service discovery and configuration client status

Name Description

APP_DISC_INIT No discovery or configuration complete.

APP_DISC_SEC_REQUIRED Security required to complete configuration.

APP_DISC_START Service discovery started.

APP_DISC_CMPL Service discovery complete.

APP_DISC_FAILED Service discovery failed.

APP_DISC_CFG_START Service configuration started.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 16

Confidential

APP_DISC_CFG_CONN_START Configuration for connection setup started.

APP_DISC_CFG_CMPL Service configuration complete.

3.1.5 Actions for incoming requests

Actions for incoming requests.

3.1.6 Table 5 Actions for incoming requests

Name Description

APP_ACT_ACCEPT Accept incoming request.

APP_ACT_REJECT Reject incoming request.

APP_ACT_NONE Do nothing—app will handle incoming request.

3.1.7 appAdvCfg_t

Configurable parameters for advertising.

Table 6 appAdvCfg_t

Type Name Description

uint16_t advDuration[] Advertising durations in ms.

uint16_t advInterval[] Advertising intervals 0.625 ms units.

3.1.8 appExtAdvCfg_t

Configurable parameters for extended advertising.

Table 7 appExtAdvCfg_t

Type Name Description

uint16_t advDuration[] Advertising durations in ms.

uint16_t advInterval[] Advertising intervals 0.625 ms units.

uint8_t maxEaEvents[] Maximum number of extended advertising events

Controller will send prior to terminating extended

advertising.

bool_t useLegacyPdu[] Whether to use legacy advertising PDUs with

extended advertising. If set to TRUE then length of

advertising data cannot exceed 31octets.

3.1.9 appSlaveCfg_t

Configurable parameters for slave.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 17

Confidential

Table 8 appSlaveCfg_t

Type Name Description

uint8_t connMax Maximum connections.

3.1.10 appMasterCfg_t

Configurable parameters for master.

Table 9 appMasterCfg_t

Type Name Description

uint16_t scanInterval The scan interval, in 0.625 ms units.

uint16_t scanWindow The scan window, in 0.625 ms units. Must be less

than or equal to scan interval.

uint16_t scanDuration The scan duration in ms. Set to zero to scan

until stopped.

uint8_t discMode The GAP discovery mode (general, limited, or none).

uint8_t scanType The scan type (active or passive).

3.1.11 appSecCfg_t

Configurable parameters for security.

Table 10 appSecCfg_t

Type Name Description

uint8_t auth Authentication and bonding flags.

uint8_t iKeyDist Initiator key distribution flags.

uint8_t rKeyDist Responder key distribution flags.

bool_t oob TRUE if out-of-band pairing data is present.

bool_t initiateSec TRUE to initiate security upon connection.

3.1.12 appUpdateCfg_t

Configurable parameters for connection parameter update.

Table 11 appUpdateCfg_t

Type Name Description

wsfTimerTicks_t idlePeriod Connection idle period in ms before attempting

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 18

Confidential

connection parameter update; set to zero to disable.

uint16_t connIntervalMin Minimum connection interval in 1.25ms units.

uint16_t connIntervalMax Maximum connection interval in 1.25ms units.

uint16_t connLatency Connection latency.

uint16_t supTimeout Supervision timeout in 10ms units.

uint8_t maxAttempts Number of update attempts before giving up.

3.1.13 appReqActCfg_t

Configurable parameters for incoming request actions.

Table 12 appReqActCfg_t

Type Name Description

uint8_t remConnParamReqAct Action for the remote connection parameter request.

3.1.14 appDiscCfg_t

Configurable parameters for slave.

Table 13 appDiscCfg_t

Type Name Description

bool_t connMax TRUE to wait for a secure connection before

initiating discovery.

3.1.15 appCfg_t

Configurable parameters for application.

Table 14 appCfg _t

Type Name Description

bool_t abortDisc TRUE to abort service discovery if service not found.

bool_t disconnect TRUE to disconnect if ATT transaction times out.

3.1.16 appDevInfo_t

Device information data type.

Table 15 appDevInfo_t

Type Name Description

bdAddr_t addr Peer device address.

uint8_t addrType Peer address type.

uint8_t directAddrType Type of address directed advertisement is addressed

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 19

Confidential

to.

bdAddr_t directAddr Address directed advertisement is addressed to.

3.2 Global Variables

3.2.1 pAppAdvCfg

This is a pointer to the advertising configurable parameters used by the application. If advertising is

used, the application must set this variable during system initialization.

3.2.2 pAppExtAdvCfg

This is a pointer to the extended advertising configurable parameters used by the application. If

extended advertising is used, the application must set this variable during system initialization.

3.2.3 pAppSlaveCfg

This is a pointer to the slave configurable parameters used by the application. If slave mode is used,

the application must set this variable during system initialization.

3.2.4 pAppMasterCfg

This is a pointer to the master configurable parameters used by the application. If master mode is used,

the application must set this variable during system initialization.

3.2.5 pAppSecCfg

This is a pointer to the security-related configurable parameters used by the application. The

application must set this variable during system initialization.

3.2.6 pAppUpdateCfg

This is a pointer to the connection parameter update parameters used by the application. The

application must set this variable during system initialization.

3.2.7 pAppDiscCfg

This is a pointer to the discovery parameters used by the application. The application must set this

variable during system initialization.

3.2.8 pAppCfg

This is a pointer to the application parameters used by the application. The application must set this

variable during system initialization.

3.2.9 pAppMasterReqActCfg

This is a pointer to the master incoming request actions used by the application. The application must

set this variable during system initialization.

3.2.10 pAppSlaveReqActCfg

This is a pointer to the master incoming request actions used by the application. The application must

set this variable during system initialization.

3.3 Initialization Functions

3.3.1 AppSlaveInit()

Initialize the App Framework for operation as a Bluetooth LE slave.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 20

Confidential

Syntax:

void AppSlaveInit(voidDesc)

This function is generally called once during system initialization before any other App Framework

API functions are called.

3.3.2 AppMasterInit()

Initialize the App Framework for operation as a Bluetooth LE master.

Syntax:

void AppMasterInit(void)

This function is generally called once during system initialization before any other App Framework

API functions are called.

3.4 Advertising Functions

3.4.1 AppAdvSetData()

Set advertising or scan data. Separate advertising and scan data can be set for connectable and

discoverable modes. The application must allocate and maintain the memory pointed to by pData

while the device is advertising.

Syntax:

void AppAdvSetData(uint8_t location, uint8_t len, uint8_t *pData)

Where:

 location: Data location. See 3.1.2.

 len: Length of the data. Maximum length is 31 bytes.

 pData: Pointer to the data.

3.4.2 AppAdvStart()

Start advertising using the parameters for the given mode.

Syntax:

void AppAdvStart(uint8_t mode)

Where:

 mode: Discoverable/connectable mode. 3.1.1.

3.4.3 AppAdvStop()

Stop advertising.

Syntax:

void AppAdvStop(void)

The device will no longer be connectable or discoverable.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 21

Confidential

3.4.4 AppAdvSetAdValue()

Set the value of an advertising data element in the advertising or scan response data. If the element

already exists in the data then it is replaced with the new value. If the element does not exist in the data

it is appended to it, space permitting.

There is special handling for the device name (AD type DM_ADV_TYPE_LOCAL_NAME). If the name can

only fit in the data if it is shortened, the name is shortened and the AD type is changed to

DM_ADV_TYPE_SHORT_NAME.

Syntax:

bool_t AppAdvSetAdValue(uint8_t location, uint8_t adType, uint8_t len, uint8_t

*pValue)

Where:

 location: Data location.

 adType: Advertising data element type.

 len: Length of the value. Maximum length is 29 bytes.

 pValue: Pointer to the value.

Return TRUE if the element was successfully added to the data, FALSE otherwise.

3.4.5 AppSlaveIsAdvertising()

Set the advertising type, which can be DM_ADV_CONN_UNDIRECT, DM_ADV_DISC_UNDIRECT, or

DM_ADV_NONCONN_UNDIRECT.

Syntax:

bool_t AppSlaveIsAdvertising(void)

Return TRUE if device is advertising, FALSE otherwise.

1.3 Advertising Extensions

To enable Advertising Extensions (AE) within an application:

- Add the following files to the project

o app_slave_ae.c (for slave role)

o dm_adv_ae.c (for advertising role)

o dm_conn_master_ae.c (for central role - Master)

o dm_conn_slave_ae.c (for peripheral role - Slave)

o dm_scan_ae.c (for scanning role)

o hci_cmd_ae.c (for HCI command interface)

- Configure AE in wsfOsInit() through proper DM initialization by:

Table 16 DM AE Initialization API

For Replace With

Advertising Role DmAdvInit() DmExtAdvInit()

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 22

Confidential

Scanning Role DmScanInit() DmExtScanInit()

Peripheral Role DmConnSlaveInit() DmExtConnSlaveInit()

Central Role DmConnMasterInit() DmExtConnMasterInit()

3.4.6 AppExtAdvSetData()

Set extended advertising data. Separate advertising and scan data can be set for connectable and

discoverable modes. The application must allocate and maintain the memory pointed to by pData

while the device is advertising.

Syntax:

void AppExtAdvSetData(uint8_t advHandle, uint8_t location, uint16_t len, uint8_t

*pData, uint16_t bufLen)

Where:

 advHandle: Advertising handle.

 location: Data location. See 3.1.2.

 len: Length of the data. Maximum length is 31 bytes.

 pData: Pointer to the data.

 bufLen: Length of the data buffer maintained by Application. Minimum length is 31 bytes.

3.4.7 AppExtAdvStart()

Start extended advertising using the parameters for the given mode.

Syntax:

void AppExtAdvStart(uint8_t numSets, uint8_t *pAdvHandles, uint8_t mode)

Where:

numSets: Number of advertising sets.

pAdvHandles: Advertising handles array.

mode: Discoverable/connectable mode. 3.1.1.

3.4.8 AppExtAdvStop()

Stop extended advertising. If the number of sets is set to 0 then all advertising sets are disabled.

Syntax:

void AppExtAdvStop(uint8_t numSets, uint8_t *pAdvHandles)

Where:

numSets: Number of advertising sets.

pAdvHandles: Advertising handles array.

3.4.9 AppExtAdvSetAdValue()

Set the value of an advertising data element in the extended advertising or scan response data. If the

element already exists in the data then it is replaced with the new value. If the element does not exist in

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 23

Confidential

the data it is appended to it, space permitting.

There is special handling for the device name (AD type DM_ADV_TYPE_LOCAL_NAME). If the name can

only fit in the data if it is shortened, the name is shortened and the AD type is changed to

DM_ADV_TYPE_SHORT_NAME.

Syntax:

bool_t AppExtAdvSetAdValue(uint8_t advHandle, uint8_t location, uint8_t adType,

uint8_t len, uint8_t *pValue)

Where:

 advHandle: Advertising handle.

 location: Data location.

 adType: Advertising data element type.

 len: Length of the value. Maximum length is 29 bytes.

 pValue: Pointer to the value.

Return TRUE if the element was successfully added to the data, FALSE otherwise.

3.5 Scanning Functions

3.5.1 AppScanStart()

This function is called to start scanning. A scan is performed using the given discoverability mode,

scan type, and duration.

Syntax:

void AppScanStart(uint8_t mode, uint8_t scanType, uint16_t duration)

Where:

 mode: Discoverability mode. See the Device Manager API Reference Manual.

 scanType: Scan type. See Device Manager API Reference Manual.

 duration: The scan duration, in milliseconds. If set to zero, scanning will continue until

AppScanStop() is called.

3.5.2 AppScanStop()

This function is called to stop scanning.

Syntax:

void AppScanStop(void)

3.5.3 *AppScanGetResult()

Get a stored scan result from the scan result list. The first result is at index zero.

Syntax:

appDevInfo_t *AppScanGetResult(uint8_t idx))

Where:

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 24

Confidential

 idx: Index of result in scan result list.

This function returns a pointer to the scan result device information or NULL if the index contains no

result.

3.5.4 AppScanGetNumResults()

Get the number of stored scan results.

Syntax:

void)

Where:

int8_t AppScanGetNumResults(void)

3.6 Connection and Security Functions

3.6.1 AppConnClose()

Close a connection with the given connection identifier.

Syntax:

void AppConnClose(dmConnId_t connId)

Where:

 connId: Connection identifier. See Device Manager API Reference Manual.

3.6.2 AppConnIsOpen()

Check if a connection is open.

Syntax:

dmConnId_t AppConnIsOpen(void)

This function returns the connection identifier of the open connection. If operating as a master with

multiple simultaneous connections, the returned connection identifier is for the first open connection

found.

3.6.3 AppHandlePasskey()

Handle a passkey request during pairing. If the passkey is to be displayed, a random passkey is

generated and displayed. If the passkey is to be entered, the user is prompted to enter the passkey.

Syntax:

void AppHandlePasskey(dmSecAuthReqIndEvt_t *pAuthReq)

Where:

 pAuthReq: DM authentication requested event structure. See Device Manager API Reference

Manual.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 25

Confidential

3.6.4 AppSetBondable()

Set the bondable mode of the device. When a device is in bondable mode it can pair with a peer device

and store the keys exchanged during pairing.

Syntax:

void AppSetBondable(bool_t bondable)

Where:

 bondable: TRUE to set device to bondable, FALSE to set to non-bondable.

3.6.5 AppSlaveSecurityReq()

Initiate a request for security as a slave device. This function will send a message to the master peer

device requesting security. The master device should either initiate encryption or pairing.

Syntax:

void AppSlaveSecurityReq(dmConnId_t connId)

Where:

 connId: Connection identifier. See Device Manager API Reference Manual.

3.6.6 AppConnAccept()

Accept a connection to a peer device with the given address.

Syntax:

void AppConnAccept(uint8_t advType, uint8_t addrType, uint8_t *pAddr)

Where:

 advType: Advertising type.

 addrType: Address type.

 pAddr: Peer device address.

3.6.7 AppExtConnAccept()

Accept a connection to a peer device with the given address using a given advertising set.

Syntax:

void AppExtConnAccept(uint8_t advHandle, uint8_t advType, uint8_t addrType,

uint8_t *pAddr)

Where:

 advHandle: Advertising handle.

 advType: Advertising type.

 addrType: Address type.

 pAddr: Peer device address.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 26

Confidential

3.6.8 AppMasterSecurityReq()

Initiate security as a master device. If there is a stored encryption key for the peer device this function

will initiate encryption, otherwise it will initiate pairing.

Syntax:

void AppMasterSecurityReq(dmConnId_t connId)

Where:

 connId: Connection identifier. See Device Manager API Reference Manual.

3.7 Discovery Functions

3.7.1 AppDiscInit()

Initialize app framework discovery.

Syntax:

void AppDiscInit(void)

This function is generally called once during system initialization before any other App Framework

API functions are called.

3.7.2 AppDiscRegister()

Register a callback function to service discovery status.

Syntax:

void AppDiscRegister(appDiscCback_t cback)

Where:

 cback: Application service discovery callback function.

3.7.3 AppDiscSetHdlList()

Set the discovery cached handle list for a given connection.

Syntax:

void AppDiscSetHdlList(dmConnId_t connId, uint8_t hdlListLen, uint16_t

*pHdlList)

Where:

 connId: Connection identifier. See Device Manager API Reference Manual.

 listLen: Length of characteristic and handle lists.

 pHdlList: Characteristic handle list.

3.7.4 AppDiscComplete()

Syntax:

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 27

Confidential

void AppDiscComplete(dmConnId_t connId, uint8_t status)

Where:

 connId: Connection identifier. See Device Manager API Reference Manual.

 status: Service or configuration status. See 3.1.3.

3.7.5 AppDiscFindService()

Perform service and characteristic discovery for a given service.

Syntax:

void AppDiscFindService(dmConnId_t connId, uint8_t uuidLen, uint8_t *pUuid,

uint8_t listLen, attcDiscChar_t **pCharList, uint16_t *pHdlList)

Where:

 connId: Connection identifier.

 uuidLen: Length of service UUID (2 or 16).

 pUuid: Pointer to service UUID.

 listLen: Length of characteristic and handle lists.

 pCharList: Characterisic list for discovery.

 pHdlList: Characteristic handle list.

Parameter pUuid points to the UUID of the service to discover. Parameter pCharList contains the list

of characteristics and descriptors to discover. Parameter pHdlList points to memory allocated by the

application for storing the handles of discovered characteristics and descriptors. Handles are stored at

the same index in pHdlList as the index of their respective characteristics in pCharList.

3.7.6 AppDiscConfigure()

Configure characteristics for discovered services.

Syntax:

void AppDiscConfigure(dmConnId_t connId, uint8_t status, uint8_t cfgListLen,

attcDiscCfg_t *pCfgList, uint8_t hdlListLen, uint16_t *pHdlList)

Where:

 connId: Connection identifier.

 status: Set to APP_DISC_CFG_START if configuration is being performed after service

discovery or APP_DISC_CFG_CONN_START if configuration is being performed on

connection setup.

 cfgListLen: Length of characteristic configuration list.

 pCfgList: Characteristic configuration list.

 hdlListLen: Length of characteristic handle list.

 pHdlList: Characteristic handle list.

Parameter pCfgList points to a list of characteristic information used to read or write a set of

characteristics. Parameter pHdlList contains the handles of the characteristics. Each entry in

pCfgList contains a handle index that maps to the position of the characteristic’s handle in pHdlList.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 28

Confidential

3.7.7 AppDiscServiceChanged()

Perform the GATT service changed procedure. This function is called when an indication is received

containing the GATT service changed characteristic. This function may initialize the discovery state

and initiate service discovery and configuration.

Syntax:

void AppDiscServiceChanged(attEvt_t *pMsg)

Where:

 pMsg: Pointer to ATT callback event message containing received indication.

3.7.8 AppDiscProcDmMsg()

Process discovery-related DM messages. This function should be called from the application's event

handler.

Syntax:

void AppDiscProcDmMsg(dmEvt_t *pMsg)

Where:

 pMsg: Pointer to DM callback event message. See Device Manager API Reference Manual.

3.7.9 AppDiscProcAttMsg()

Process discovery-related ATT messages. This function should be called from the application's event

handler.

Syntax:

void AppDiscProcDmMsg(dmEvt_t *pMsg)

Where:

 pMsg: Pointer to ATT callback event message. See Attribute Protocol API Reference Manual.

3.8 Message Processing Functions

3.8.1 AppSlaveProcDmMsg()

Process connection-related DM messages for a slave. This function should be called from the

application's event handler.

Syntax:

void AppSlaveProcDmMsg(dmEvt_t *pMsg)

Where:

 pMsg: Pointer to DM callback event message. See Device Manager API Reference Manual.

3.8.2 AppSlaveSecProcDmMsg()

Process security-related DM messages for a slave. This function should be called from the

application's event handler.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 29

Confidential

Syntax:

void AppSlaveSecProcDmMsg(dmEvt_t *pMsg)

Where:

 pMsg: Pointer to DM callback event message. See Device Manager API Reference Manual.

3.8.3 AppMasterProcDmMsg()

Process connection-related DM messages for a master. This function should be called from the

application's event handler.

Syntax:

void AppMasterProcDmMsg(dmEvt_t *pMsg)

Where:

 pMsg: Pointer to DM callback event message. See Device Manager API Reference Manual.

3.8.4 AppMasterSecProcDmMsg()

Process security-related DM messages for a master. This function should be called from the

application's event handler.

Syntax:

void AppMasterSecProcDmMsg(dmEvt_t *pMsg)

Where:

 pMsg: Pointer to DM callback event message. See Device Manager API Reference Manual.

3.8.5 AppServerConnCback()

ATT connection callback for app framework. This function is used when the application is operating

as an ATT server and it uses notifications or indications. This function can be called by the

application's ATT connection callback or it can be installed as the ATT connection callback.

Syntax:

void AppMasterSecProcDmMsg(dmEvt_t *pMsg)

Where:

 pDmEvt: Pointer to DM callback event message. See Device Manager API Reference Manual].

3.9 Callback Interface

3.9.1 (*appDiscCback_t)()

Service discovery and configuration callback.

Syntax:

void (*appDiscCback_t)(dmConnId_t connId, uint8_t status)

Where:

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 30

Confidential

 connId: Connection identifier. See Device Manager API Reference Manual.

 status: Service or configuration status.

4 DB Interface
The DB interface provides an abstracted device database for storing bonding data and other device

parameters. The DB interface is used internally by the App Framework t manage bonding data and

client characteristic configuration descriptors. The interface can also be used by the application.

4.1 Constants and Data Types

4.1.1 appDbHdl_t

Device database record handle type. Each record in the device database is accessed via a unique

handle.

4.1.2 APP_DB_HDL_NONE

No device database record handle. This special value for the record handle is typically used to indicate

an error or that no record was found.

4.2 Functions

4.2.1 AppDbInit()

Initialize the device database. This function is typically called once at system startup.

4.2.2 AppDbNewRecord()

Create a new device database record. This function is typically called when bonding begins.

Syntax:

appDbHdl_t AppDbNewRecord(uint8_t addrType, uint8_t *pAddr))

Where:

 addrType: Address type. See Device Manager API Reference Manual.

 pAddr: Peer device address.

This function returns the database record handle of the new record.

The function returns the database record handle.

4.2.3 AppDbDeleteRecord()

Delete a new device database record. This function is called if bonding fails or if the application

desired to remove a bond.

Syntax:

void AppDbDeleteRecord(appDbHdl_t hdl)

Where:

 hdl: Database record handle.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 31

Confidential

4.2.4 AppDbValidateRecord()

Validate a new device database record. This function is called when pairing is successful and the

devices are bonded.

Syntax:

void AppDbValidateRecord(appDbHdl_t hdl, uint8_t keyMask)

Where:

 hdl: Database record handle.

 keyMask: Bitmask of keys to validate.

4.2.5 AppDbCheckValidRecord()

Check if a record has been validated. If it has not, delete it. This function is typically called when the

connection is closed.

Syntax:

void AppDbCheckValidRecord(appDbHdl_t hdl))

Where:

 hdl: Database record handle.

4.2.6 AppDbCheckBonded()

Check if there is a stored bond with any device.

Syntax:

bool_t AppDbCheckBonded(void)

This function returns TRUE if a bonded device is found, FALSE otherwise.

4.2.7 AppDbDeleteAllRecords()

Delete all database records.

Syntax:

void AppDbDeleteAllRecords((void)

4.2.8 AppDbFindByAddr()

Find a device database record by peer address.

Syntax:

appDbHdl_t AppDbFindByAddr(uint8_t addrType, uint8_t *pAddr)

Where:

 addrType: Address type. See Device Manager API Reference Manual.

 pAddr: Peer device address.

This function returns the database record handle or APP_DB_HDL_NONE if not found.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 32

Confidential

4.2.9 AppDbFindByLtkReq()

Find a device database record from data in an LTK request. The App Framework calls this function

when operating as a slave device and the master requests to enable encryption with the LTK.

Syntax:

appDbHdl_t AppDbFindByLtkReq(uint16_t encDiversifier, uint8_t *pRandNum)

Where:

This function returns the database record handle or APP_DB_HDL_NONE if not found.

4.2.10 AppDbGetHdl()

Get the device database record handle associated with an open connection.

Syntax:

appDbHdl_t AppDbGetHdl(dmConnId_t connId)

Where:

 connId: Connection identifier. See Device Manager API Reference Manual.

This function returns the database record handle or APP_DB_HDL_NONE.

4.2.11 *AppDbGetKey()

Get a key from a device database record. The App Framework calls this function to retrieve the LTK

when encryption is enabled.

Syntax:

dmSecKey_t *AppDbGetKey(appDbHdl_t hdl, uint8_t type, uint8_t *pSecLevel)

Where:

 hdl: Database record handle.

 type: Type of key to get. See Device Manager API Reference Manual.

 pSecLevel: If the key is valid, returns the security level of the key. See Device Manager API

Reference Manual.

This function returns a pointer to the key if the key is valid or NULL if not valid.

4.2.12 AppDbSetKey()

Set a key in a device database record. The App Framework calls this function to store a key received

during pairing.

Syntax:

void AppDbSetKey(appDbHdl_t hdl, dmSecKeyIndEvt_t *pKey)

Where:

 hdl: Database record handle.

 pKey: Key data. See Device Manager API Reference Manual.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 33

Confidential

4.2.13 *AppDbGetCccTbl()

Get the client characteristic configuration descriptor table. This table contains a peer device’s stored

settings for indications and notifications.

Syntax:

uint16_t *AppDbGetCccTbl(appDbHdl_t hdl)

Where:

 hdl: Database record handle.

This function returns a pointer to client characteristic configuration descriptor table.

4.2.14 AppDbSetCccTblValue()

Set a value in the client characteristic configuration table. This function is typically called from the

application’s ATT client characteristic configuration callback to store a new value when it is written by

the peer device.

Syntax:

void AppDbSetCccTblValue(appDbHdl_t hdl, uint16_t idx, uint16_t value)

Where:

 hdl: Database record handle.

 idx: Table index. See Attribute Protocol API Reference Manual.

 value: Client characteristic configuration value. See Attribute Protocol API Reference

Manual.

4.2.15 AppDbGetDiscStatus()

Get the discovery status.

Syntax:

uint8_t AppDbGetDiscStatus(appDbHdl_t hdl)

Where:

 hdl: Database record handle.

This function returns the discovery status.

4.2.16 AppDbSetDiscStatus()

Set the discovery status.

Syntax:

void AppDbSetDiscStatus(appDbHdl_t hdl, uint8_t status)

Where:

 hdl: Database record handle.

 status: The discovery status. See 3.1.3.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 34

Confidential

4.2.17 AppDbGetHdlList()

Get the cached handle list.

Syntax:

uint16_t *AppDbGetHdlList(appDbHdl_t hdl)

Where:

 hdl: Database record handle.

This function returns a pointer to the handle list.

4.2.18 AppDbSetHdlList()

Set the discovery status.

Syntax:

void AppDbSetHdlList(appDbHdl_t hdl, uint16_t *pHdlList)

Where:

 hdl: Database record handle.

 pHdlList: Pointer to handle list.

4.2.19 *AppDbGetDevName()

Get the device name.

Syntax:

char *AppDbGetDevName(uint8_t *pLen)

Where:

 pLen: Returned device name length.

Returns a pointer to a UTF-8 string containing the device name or NULL if not set.

4.2.20 AppDbSetDevName()

Set the device name.

Syntax:

void AppDbSetDevName(uint8_t len, char *pStr)

Where:

 len: Device name length.

 pStr: UTF-8 string containing the device name.

5 UI Interface
The UI interface provides the application with simple user interface abstractions for button press

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 35

Confidential

handling, sounds, display, and other user feedback.

5.1 Constants and Data Types

5.1.1 UI event enumeration

The following UI event enumeration values are used by function AppUiAction().

Table 17 UI event enumeration

Name Description

APP_UI_NONE No event.

APP_UI_RESET_CMPL Reset complete.

APP_UI_DISCOVERABLE Enter discoverable mode.

APP_UI_ADV_START Advertising started.

APP_UI_ADV_STOP Advertising stopped.

APP_UI_SCAN_START Scanning started.

APP_UI_SCAN_STOP Scanning stopped.

APP_UI_SCAN_REPORT Scan data received from peer device.

APP_UI_CONN_OPEN Connection opened.

APP_UI_CONN_CLOSE Connection closed.

APP_UI_SEC_PAIR_CMPL Pairing completed successfully.

APP_UI_SEC_PAIR_FAIL Pairing failed or other security failure.

APP_UI_SEC_ENCRYPT Connection encrypted.

APP_UI_SEC_ENCRYPT_FAIL Encryption failed.

APP_UI_PASSKEY_PROMPT Prompt user to enter passkey.

APP_UI_ALERT_CANCEL Cancel a low or high alert.

APP_UI_ALERT_LOW Low alert.

APP_UI_ALERT_HIGH High alert.

5.1.2 Button press enumeration

Button press enumeration.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 36

Confidential

Table 18 Button press enumeration

Name Description

APP_UI_BTN_NONE No button press.

APP_UI_BTN_1_DOWN Button 1 down press.

APP_UI_BTN_1_SHORT Button 1 short press.

APP_UI_BTN_1_MED Button 1 medium press.

APP_UI_BTN_1_LONG Button 1 long press.

APP_UI_BTN_1_EX_LONG Button 1 extra long press.

APP_UI_BTN_2_DOWN Button 2 down press.

APP_UI_BTN_2_SHORT Button 2 short press.

APP_UI_BTN_2_MED Button 2 medium press.

APP_UI_BTN_2_LONG Button 2 long press.

APP_UI_BTN_2_EX_LONG Button 2 extra long press.

5.1.3 LED values

LED values.

Table 19 LED values

Name Description

APP_UI_LED_NONE No LED.

APP_UI_LED_1 LED 1.

APP_UI_LED_2 LED 2.

APP_UI_LED_3 LED 3.

APP_UI_LED_4 LED 4.

APP_UI_LED_WRAP Wrap to beginning of sequence.

5.1.4 Sound tone values

Sound tone values.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 37

Confidential

Table 20 Sound tone Vvalues

Name Description

APP_UI_SOUND_WRAP Sound tone value for wrap/repeat.

5.1.5 appUiSound_t

This structure is used to create sounds played by function AppUiSoundPlay().

Table 21 appUiSound_t

Type Name Description

uint16_t tone Sound tone in Hz. Use 0 for silence.

uint16_t duration Sound duration in milliseconds.

5.1.6 appUiLed_t

This structure is used to create LED flash patterns used with function AppUiLedStart().

Table 22 appUiLed_t

Type Name Description

uint8_t led LED to control.

uint8_t state On or off.

uint16_t duration Duration in milliseconds.

5.2 Functions

5.2.1 AppUiAction()

Perform a user interface action based on the event value passed to the function. The implementation of

this function will perform a particular action, such as playing a sound or blinking an LED.

Syntax:

void AppUiAction(uint8_t event)

Where:

 event: User interface event value. See 5.1.1.

5.2.2 AppUiDisplayPasskey()

Display a passkey. This function is only applicable to devices that can display the six-digit numeric

passkey value.

Syntax:

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 38

Confidential

void AppUiDisplayPasskey(uint32_t passkey)

Where:

 passkey: Passkey to display.

5.2.3 AppUiDisplayRssi()

Display an RSSI value. This function is only applicable to devices that can be in a connection.

Syntax:

void AppUiDisplayRssi(int8_t rssi)

Where:

 rssi: RSSI value to display.

5.2.4 AppUiBtnRegister()

Register a callback function to receive button presses.

Syntax:

void AppUiBtnRegister(appUiBtnCback_t cback)

Where:

 cback: Application button callback function.

5.2.5 AppUiSoundPlay()

Play a sound.

Syntax:

void AppUiSoundPlay(const appUiSound_t *pSound)

Where:

 pSound: Pointer to sound tone/duration array. See 5.1.3.

5.2.6 AppUiSoundStop()

Stop the sound that is currently playing.

Syntax:

void AppUiSoundStop(void)

5.2.7 AppUiLedStart()

Start LED blinking.

Syntax:

void AppUiLedStart(const appUiLed_t *pLed)

Where:

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 39

Confidential

 pLed: Pointer to LED data structure. See 5.1.6.

5.2.8 AppUiLedStop()

Stop LED blinking.

Syntax:

void AppUiLedStop(void)

5.3 Callback Interface

5.3.1 (*appUiBtnCback_t)()

This callback function sends button events to the application.

Syntax:

void (*appUiBtnCback_t)(uint8_t btn)

Where:

 btn: Button press event. See 5.1.2.

6 HW Interface
The HW interface provides an abstraction layer for hardware sensors.

6.1 Constants and Data Types

6.1.1 appHrm_t

Heart rate measurement structure.

Table 23 appHrm_t

Type Name Description

uint16_t *pRrInterval Array of RR intervals.

uint8_t numIntervals Length of RR interval array.

uint16_t energyExp Energy expended value.

uint8_t heartRate Heart rate.

uint8_t flags Heart rate measurement flags.

6.1.2 appDateTime_t

Date and time structure.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 40

Confidential

Table 24 appDateTime_t

Type Name Description

uint16_t year Year.

uint8_t month Month.

uint8_t day Day.

uint8_t hour Hour.

uint8_t min Minutes.

uint8_t sec Seconds.

6.1.3 appBpm_t

Blood pressure measurement structure.

Table 25 appBpm_t

Type Name Description

appDateTime_t timestamp Date-time.

uint16_t systolic Systolic pressure.

uint16_t diastolic Diastolic pressure.

uint16_t map Mean arterial pressure.

uint16_t pulseRate Pulse rate.

uint16_t measStatus Measurement status.

uint8_t flags Flags.

uint8_t userId User ID.

6.1.4 appWsm_t

Weight scale measurement structure.

Table 26 appWsm_t

Type Name Description

appDateTime_t timestamp Date-time.

uint32_t weight Weight.

uint8_t flags Weight measurement flags.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 41

Confidential

6.1.5 appTm_t

Temperature measurement structure.

Table 27 appTm_t

Type Name Description

appDateTime_t timestamp Date-time.

uint32_t temperature Temperature.

uint8_t flags Flags.

uint8_t tempType Temperature type.

6.1.6 appPlxCm_t

Pulse oximeter continuous measurement structure.

Table 28 appTm_t

Type Name Description

uint8_t flags Flags

uint16_t spo2 SpO2PR-Spot-Check - SpO2

uint16_t pulseRate SpO2PR-Spot-Check - Pulse Rate

uint16_t spo2Fast SpO2PR-Spot-Check Fast - SpO2

uint16_t pulseRateFast SpO2PR-Spot-Check Fast - Pulse Rate

uint16_t spo2Slow SpO2PR-Spot-Check Slow - SpO2

uint16_t pulseRateSlow SpO2PR-Spot-Check Slow - Pulse Rate

uint16_t measStatus Measurement Status

uint32_t sensorStatus Device and Sensor Status

uint16_t pulseAmpIndex Pulse Amplitude Index

6.1.7 appPlxScm_t

Pulse oximeter spot check measurement structure.

Table 29 appTm_t

Type Name Description

uint8_t flags Flags

uint16_t spo2 SpO2PR-Spot-Check - SpO2

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 42

Confidential

uint16_t pulseRate SpO2PR-Spot-Check - Pulse Rate

appDateTime_t timestamp Timestamp

uint16_t measStatus Measurement Status

uint32_t sensorStatus Device and Sensor Status

uint16_t pulseAmpIndex Pulse Amplitude Index

uint8_t flags Flags

6.2 Functions

6.2.1 AppHwBattRead()

Read the battery level. The battery level value returned in pLevel is the percentage of remaining

battery capacity (0-100%).

Syntax:

void AppHwBattRead(uint8_t *pLevel)

Where:

 pLevel: Battery level return value.

6.2.2 AppHwHrmRead()

Perform a heart rate measurement.

Syntax:

void AppHwHrmRead(appHrm_t *pHrm)

Where:

 pHrm: Heart rate measurement return value.

Return the heart rate along with any RR interval data.

6.2.3 AppHwBpmRead()

Perform a blood pressure measurement.

Syntax:

void AppHwBpmRead(bool_t intermed, appBpm_t *pBpm)

Where:

 intermed: TRUE if this is an intermediate measurement.

 pBpm: Blood pressure measurement return value.

Return the measurement data.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 43

Confidential

6.2.4 AppHwWsmRead()

Perform a weight scale measurement.

Syntax:

void AppHwWsmRead(appWsm_t *pWsm)

Where:

 pWsm: Weight scale measurement return value.

Return the measurement data.

6.2.5 AppHwTmRead()

Perform a temperature measurement.

Syntax:

void AppHwTmRead(bool_t intermed, appWsm_t *pWsm)

Where:

 intermed: TRUE if this is an intermediate measurement.

 pTm: Temperature measurement return value.

Return the measurement data.

6.2.6 AppHwTmSetUnits ()

Set the temperature measurement units.

Syntax:

void AppHwTmSetUnits (uint8_t units)

Where:

 units: CH_TM_FLAG_UNITS_C or CH_TM_FLAG_UNITS_F.

App Framework API

Copyright  2011-2016 ARM. All rights reserved. Page 44

Confidential

6.2.7 AppHwPlxcmRead()

Perform a pulse oximeter continuous measurement.

Syntax:

void AppHwPlxcmRead(appPlxCm_t *pPlxcm)

Where:

 pPlxcm: Pulse oximeter measurement return value.

Return the measurement data.

6.2.8 AppHwPlxscmRead()

Perform a pulse oximeter spot check measurement.

Syntax:

void AppHwPlxscmRead(appPlxScm_t *pPlxscm)

Where:

 pPlxscm: Pulse oximeter measurement return value.

Return the measurement data.

