ambiamicro

OTA Example Project

User’s Guide

Date Revision History Reviser
2016-12-20 V0.1 draft created Renton Ma
2016-12-30 V0.2 added ota profile and app descriptions. Renton Ma
2017-1-12 V0.3 add storage type definition Mike Li
2017-2-17 V0.4 added Apollo2 support description Renton Ma
2017-3-24 V0.5 updated according to setting changes Renton Ma
2017-5-5 V1.0 created for AmbiqSuite SDK Rel 1.2.8 David Munsinger
2017-11-27 V1.1 created for AmbiqSuite SDK Rel 1.2.11 Zhongyi Chen

Table of Contents

OTA EXaMPIE PrOJECE. ...t 1
1o INFOAUCTION ... 3

2. SYSteM DESCIIPLON ..o 4

2.1 FRALUIES ... 4

2.2 System Architecture and operation flow ... 5

2.3 MCU MEMOIY MAP ...ttt 6

2.4 Bootloader and Flash Flag Page ..., 7

25 AMOTA SEIVICE. ...t 10

3. Getting Started...........o.coooooeeeeeee e 16

3.1 FOIAEr ir€CIONY ...t 16

3.2 Development EnNVIronmMent................c.cccooooiiviiiieeceeeee e 16

3.3 RUNthe eXampPle ... 18

4. CharacteriStiCS ..ot 24

4.1 FOr APOLLO MCU ... 24

4.2 FOr APOLLOZ MCU ..ot 24

FIGURE 1 SYSTEM ARCHITECTURE AND OPERATION FLOWoooooieeeeeeeeeeeeeeeeen 5
FIGURE 2 MCU MEMORY MAP ...ttt 6
FIGURE 3 BOOT SEQUENCE ..o 8
FIGURE 4 OTA SERVICE FLOW ... oottt 15
FIGURE 5 FOLDER STRUCTUREco.coooioioioeeeeeeoeeeeeeeeeeeeeeeeeeee e 16

FIGURE 6 AM FLASH SCREENSHOToooiiiiiiiisssisesiss s 19

1. Introduction

This document describes the firmware Over-The-Air (OTA) update example using BLE 4.2 for
APOLLO" and APOLLO2 series MCUs as well as the firmware running inside of the HCI
controller. The example project consists of the following parts to complete the function:
- Program running on the APOLLO/APOLLO2 series MCUs.
- AMOTA Application (freertos_amota)
- Bootloader (exactle_fit_amota_multi_boot)
- OTA BLE Service (amota)
- BLE stack (ARM Cordio BTLE Stack)
- Firmware running on BLE HCI controller device (EM9304)
- Smartphone APP on iOS or Android system. (OTA Demo)
- Makefile to generate binary files for APP to load.

The purpose of the example is to provide a reference for firmware update of the MCU and the
HCI controller over BLE communication while the application is still running. Data transfer is in
background operation of the application and can be paused and resumed during the
progress. Data being transferred is verified by each communication package as well as a
whole image once the transfer is complete. Data received can be stored either inside the
empty area of the internal flash (if there is enough space left in the internal flash of the MCU)
or into the external serial flash. After the complete image is received and stored correctly, the
system will keep operating from the existing firmware until a system reset is triggered. The
new image will be loaded into the target internal flash by the bootloader after a system reset,
and executed automatically if checked available.

' Note: Apollol support will be provided as soon as EM9304 device is supported with the
apollol_evb.

2. System Description

This section of the document describes the system of the OTA example project in
general.

The example is developed, compiled and tested with Keil ARM compiler V5.17 and and
Eclipse Mars 1 Release.

2.1 Features

Functions during OTA

- Robust to communication disturbances.
Continue update progress after re-connection.

- Side-by-side firmware update.
The system update progress is executed while application is running, providing a
“silent update” experience to the end user.

Proprietary OTA service on top of BLE stack.

- RF IC always works in HCI controller mode and does not require image switching.

High speed communication

- Firmware data transfer at a speed of > 3KB / sec with iOS and Android.
(Target version: iOS 10 and Android 6.0)

Error handling

- CRC checking is applied to each data packet received as well as to the whole image
after the completion of the data transfer.

- Packet will be requested to be re-transmitted by the central device (smartphone) if
there is error happened during the communication.

Firmware version information is transmitted and stored.

Image storage

- Image can be selected to be stored either in internal flash or external storage,
enabling larger image size to be updated.

Update of the BLE stack itself

- Since the image is transferred as one entity containing the BLE stack as well as the
OTA service itself, this OTA update flow allows user to update the BLE stack as well
as the OTA service to be updated.

Encrypted image data (extended feature)

- Image being transferred and stored can be encrypted and decrypted during the boot
process.

Data type can be specified (extended feature)

- Type of the data being transferred and stored can be specified as application
firmware or plain data providing the possibility to update only the data arrays inside
the firmware without updating the rest of the code.

(Extended features are not included in version 1.0 of the example project.)

2.2 System Architecture and operation flow
A high-level system architecture and operation flow is illustrated in the diagram below:

APOLLO HCI Controller

FIGURE 1 SYSTEM ARCHITECTURE AND OPERATION FLOW
The BLE stack used in this example is the ARM Cordio BTLE stack (a.k.a Wicentric BLE
Stack, or exactLE Stack) software version 2.1. The upper layers (above and including
HCI host layer) of the stack is running on the APOLLO/APOLLO2 series MCUs as a part
of the application firmware. This leaves the BTLE module working as a standard HCI
controller. This architecture utilizes the ultra-low operating power feature of the
APOLLO/APOLLO2 series MCUs for the BLE communication as much as possible to
further reduce overall system power consumption, as well as providing a flexibility of
choosing the external RF controller.
As the application firmware gets boots up, the lower level software driver will send the
standard HCI controller image to the RF controller, and the BLE communication can be
started once HCI controller and the stack are initialized.
Since the stack and the HCI controller static image are parts of the application firmware,
they can be updated during the OTA progress.
For further information on the ARM Cordio BTLE stack, please refer to the documents
located in the directory of ..\AmbigMicro\AmbiqSuite\third party\exactle\docs\pdf .

The example starts to broadcast with standard services (heart rate, device information
and battery) once loaded. When a central device connects to the example device,
AMOTA service can be discovered, and data transfer can be triggered according to the
pre-defined meta data description. For more information of the AMOTA service, please
refer to 2.5 AMOTA Service of this document.

During data transfer, application code can keep running. This example uses a binary
counter that turns on and off the LED arrays on the APOLLO/APOLLO2 series MCUs
EVB to indicate the operating status of the application code. Data received is stored into
internal flash or external serial flash according to the user specification.

Once the data transfer is completed, the AMOTA service will update the flash flag page
located at a fixed memory address (default: 0x3C00 for APOLLO MCU and 0x4000 for
APOLLO2 MCU) to mark a valid new image is available for the bootloader to load. User
can make the choice of whether to trigger a POI reset to the MCU or keep running the old
application code.

After a system reset, bootloader checks the flash flag page information and loads the
available new image into the target memory address. Once verification passes, the new
image gets executed from the bootloader. For details about bootloader, please check
section 2.4 Bootloader.

2.3 MCU Memory Map
The MCU memory map is shown in the figure below:

I External
Storage Area
External Flash
A4
il 0x0007FFFF
Internal
Storage Area
Application
<“«— firmware
boundary
Internal Flash ARP||CatI0n
(512KB on Firmware
APOLLO MCU)
0x00004000
0x00003FFF
Flash Flag Page 0x00003C00
0x00003BFF
Bootloader
0x00000000

FIGURE 2 APOLLO MCU MEMORY MAP

I External

Storage Area
External Flash

A 4
i 0x000FFFFF
Internal
Storage Area
Application
<“«— firmware
boundary
Internal Flash Ap_pllcatlon
(1024KB on Firmware

APOLLO2 MCU)

0x00008000

0x00007FFF
Flash Flag Page 0200006000
0x00005FFF

Bootloader
0x00000000

FIGURE 3 APOLLO2 MCU MEMORY MAP

Taking APOLLO as example, the first 16K bytes of the internal flash is mapped to the
bootloader (15K bytes) and flash flag page (1K bytes). By default, flash flag page is fixed
starting from 0x3CO00. Application firmware can be mapped right after the flash flag page
starting from 0x4000 (default), or any other address above. Application firmware
boundary is the end of the application code aligned with the internal flash page size
(which is 2048 bytes for APOLLO MCU). If the data received is to be stored inside the
internal flash, user has to ensure that the space left inside the internal flash starting from
the application firmware boundary is sufficient to hold the data. If not, it is recommended
to store the data received inside the external storage device.

Checking the space left inside the internal flash is done by API provided along with the
example project.

For above mentioned memory mapping, with APOLLO2 MCU, the addresses are different
due to the size of the flash page on APOLLO2 is 8K bytes. For APOLLO2, the default
flash flag page starting address is mapped to 0x6000, and the application load starting
address is mapped to 0x8000.

2.4 Bootloader and Flash Flag Page

241 Bootloader
Bootloader of this example is built based on multi_boot example of the SDK. For more
information of multi_boot, please check MultiProtocolBootloader.pdf in the folder of ..
\AmbigMicro\AmbigSuite\docs\app notes\bootloader.

This section only describes the modification made on multi_boot as well as the extended
flash flag page settings.

The modified boot sequence is shown in the figure below:

l

Copy Stored Image Binary Jump to Apphcator Wait for Data from Host
to Active Flash Area Firmware and Run Device

;

Update Flash Flag Page

FIGURE 4 BOOT SEQUENCE
After checking the override pin, the bootloader checks the ui320ptions flag stored in flash
flag page (address offset 0x1C) to determine whether there is a new image stored in
internal or external flash. If there is, the bootloader will first check the availability of the
stored image by calculate and compare the CRC of the stored data with the CRC inside
the flash flag page (ui32CRC, address offset 0x08), and load the image into the target link
address (pui32LinkAddress, address offset 0x00) if the image is valid.

Storage type of the new image is specified by user when generating the OTA binary file.
The smartphone APP is also able to set the target storage option.

Bootloader is a standalone project besides the application.
It is located at ..\Ambigsuite\boards\apollo evk base\examples\multi boot.

2.4.2 Flash Flag Page
This example project utilizes a modified flash flag page data structure which is shown in
the table below:

Length Address

Symbol (bytes) Offset Description
Starting address where the image was linked to run.
puid2LinkAddress 4 0x00 _|This value shall not be small than 0x4000.
ui32NumBytes 4 0x04 |Length of the executable image in bytes.
ui32CRC 4 0x08 |CRC-32 Value for the full image.
Override GPIO number.
ui320verrideGPIO 4 0x0C__|Can be used to force a new image load.
Active polarity for the override pin.
0: Logic low; 1: Logic high
If the selected GPIO input value matches active polarity, bootloader is forced
ui320verridePolarity 4 0x10 |to load new image from external host via serial communication.
Stack pointer location.
pui32StackPointer 4 0x14 |This value shall not be small than starting address of the internal SRAM.
Reset vector location.
pui32ResetVector 4 0x18 |This value shall not be smaller than pui32LinkAddress.

Boot Options.
0x01: New image available in internal flash.
0x02: New image available in external flash.

ui320ptions 4 0x1C |Other: No new image available.
ui32Version 4 0x20 __|Version Informatin of the Current Image
ui32VersionNewlmage 4 0x24 |Version Informatin of the New Image. (Not used in this example.)
pui32StorageAddressNewlmage 4 0x28 |Starting address where the new image was stored.
ui32TotalNumBytesNewlmage 4 0x2C _|Length of the new image being received in bytes. (Not used in this example.)
ui32StoredNumBytesNewlmage 4 0x30 |Bytes already received and stored. (Not used in this example.)
Ui32CRCNewlmage 4 0x34 |CRC-32 Value for the new image being received. (Not used in this example.)
Use to determine whether the image is encrypted.
0: image is not encrypted.
bEncrypted 4 0x38 |1:image is encrypted.

TABLE 1 FLASH FLAG PAGE

The flash flag page is by default located at 0x3C00 (0x4000 for APOLLO2) of the internal
flash, however it is possible for user to specify the start address of the flash flag page to the
last page in the internal flash. E.g. 0x7F800 for a device with 512KB internal flash. This can
be done by setting the following macro to 1.

R I R e e e e e T s

41 | //

42 | // Ignore the configured location, and use the last available flash page as the
43 | // flag page.

44 | //

R e T T
46 | #define USE_LAST PAGE_FOR_FLAG 1
47

The macro is located at line 46

of .\AmbigSuite\\boards\apollo_evk_base\examples\multi_boot\src\multi_boot_config.h.
After changing to this setting is made, both multi_boot and freertos_amota projects have to be
re-built to work with the new setting.

Note: Using the last page of flash as the flash flag page will significantly increase the binary
file size of the “combined” binary (boot + application + flash flag page information), due to the
gap between the end of the application firmware and the flash flag page is filled with OxFF in
the binary file generated.

2.5 AMOTA Service
The following section describes the AMOTA service that is implemented in this example to
perform the key function of the OTA process.

2.5.1 Service Declaration
The service UUID of Ambig Micro OTA (AMOTA) service is defined as below:
00002760-08C2-11E1-9073-0E8AC72E1001.
Note:
Base UUID of Bluetooth SIG is 00000000-0000-1000-8000-00805F9B34FB.
All customized 128-bit UUIS should be less than base UUID.

2.5.2 Service Characteristics Definitions
Rx: 00002760-08C2-11E1-9073-0ES8AC72E0001
Tx: 00002760-08C2-11E1-9073-0E8AC72E0002

L. . Mandatory | Security o
Characteristic Requirements . L. Description
Properties Permissions

Characteristic Rx M Write None Data from client
Characteristic Rx User Value read by
- N Read None .
Description client
Value
Characteristic Tx M Notify None notification to
client
Characteristic Tx
Value
Client Characteristic o
)) Read None notification
Configuration .)
. configuration
descriptor

TABLE 2 CHARACTERISTICS

2.5.3 Characteristics
The following characteristics are defined in the AM OTA Service. Only one instance of each
characteristic is permitted within this service.

Characteristic Name Mandatory Properties Security Permission
Received data Write Command None
Characteristic

Send data Characteristic Notify None

Characteristic Descriptors:
Characteristic User Description
This characteristic descriptor defines the AM OTA version with read permission property.

Client Characteristic Configuration Descriptor:

The notification characteristic will start to notify if the value of the CCCD (Client
Characteristic Configuration Descriptor) is set to 0x0001 by client. The send data
characteristic will stop notifying if the value of the CCCD is set to 0x0000 by client.

2.5.4 Service Behaviors
1. OTA client sends firmware header/meta info to server by amota packet format
Server replies with received byte counters
OTA client starts to send firmware data by amota packet format
Server replies with received byte counters

o~ b

OTA client sends verify command to ask server to calculate the whole firmware
checksum

Server replies checksum result to client

7. Client sends reset command to server (APP behavior)

8. Server sends reset command response to server before reset (APP behavior)

AMOTA packet format

Length: two bytes (data + checksum)
Cmd: 1 byte

Data: 0 ~ 512 bytes

Checksum: 4 bytes

Length Command Data Checksum
Two bytes 1 byte 0 ~ 512 bytes 4 bytes
Commands:

/* amota commands */

typedef enum

{
AMOTA_CMD_UNKNOWN,
AMOTA_CMD_FW_HEADER,
AMOTA_CMD_FW _DATA,
AMOTA_CMD_FW_VERIFY,
AMOTA_CMD_FW _RESET,
AMOTA_CMD_MAX

}eAmotaCommand;

FW Header Info
Amota packet header (two bytes length + 1 byte cmd)

amotaHeaderlnfo t

encrypted: 4 bytes
fwStartAddr: 4 bytes
fwLength: 4 bytes
fwCrc: 4 bytes
seclnfoLen: 4 bytes
resvd1: 4 bytes
resvd2: 4 bytes
resvd3: 4 bytes
version: 4 bytes
fwDataType: 4 bytes
storageType: 4 bytes
resvd3: 4 bytes

Amota packet checksum (4 bytes)

FW Data Packet

Amota packet header (two bytes length + 1 byte cmd)
Data: 0 ~ 512 bytes

Amota packet checksum (4 bytes)

FW Verify Command
Amota packet header (two bytes length + 1 byte cmd)

Amota packet checksum (4 bytes)

Target Reset Command

Amota packet header (two bytes length + 1 byte cmd)
Amota packet checksum (4 bytes)

Command Response Format
Length: 2 bytes (data + status)
Cmd: 1 byte

Status: 1 byte

Data: 0 ~ 16 bytes

/* amota status */

typedef enum

{
AMOTA_STATUS_SUCCESS,
AMOTA_STATUS_CRC_ERROR,
AMOTA_STATUS_INVALID _HEADER _INFO,
AMOTA_STATUS_INVALID _PKT_LENGTH,
AMOTA_STATUS_INSUFFICIENT_BUFFER,
AMOTA_STATUS_INSUFFICIENT_FLASH,
AMOTA_STATUS_UNKNOWN_ERROR,
AMOTA_STATUS_FLASH_WRITE_ERROR,
AMOTA_STATUS_MAX

JeAmotaStatus;

FW Header Info Response & FW Data Response

Amota packet header (two bytes length + 1 byte cmd)
Status: 1 byte
Received packet counter: 4 bytes

FW Verify & Target Reset Response

Amota packet header (two bytes length + 1 byte cmd)
Status: 1 byte

Connection
Lost

OTA process

OTA meta

stopped

data vahdabon

eply last recewed bytes

150 chent can start to

transmit/retransmit

I

Every 400 bytes, Server should

send CRC to

')
OTA data/firmware transfer Chent response to device 1o
complete, send status 1o chent INQQEeT restart process
. J/

FIGURE 5 OTA SERVICE FLOW

* Create services
svc_amotas.c
svc_amotas.h
* Profile and OTA logic implementation
amotas_main.c
amotas_api.h
¢ Initialize in application
Set AmotasCfg_t
Add AMOTAS_TX_CH_CCC_HDL in attsCccSet_t
Register callback in FitStart()
SvcAmotasCbackRegister(NULL, amotas_write_cback);
Add service in FitStart()
SvcAmotasAddGroup();
Call amotas_proc_msg() in fitProcMsg() for event DM_CONN_OPEN_IND
Add amotas_start() and amotas_stop() in function fitProcCccState()

3. Getting Started

3.1 Folder directory
The example project comes with the following folder structure:

< | examples 5 y
Wome Share View o
« A > ThisPC > Local Disk(C) > AmbiqMicro > AmbiqSuite > boards > apolio2_evb > examples > v © Search exampl »

bsp Name Date modified Type Size multi_boot
examples e fold
P ade_lpmoded 1162017 722 A File folder File folder
adc_Ipmode0 adc_lpmode1 1/16/2017 1:22 le fc
adc_lpmodet ade_lpmode2 1/16/2017 722 le f
adc lpmode2 be_boot_demo 1/16/2017 7:22 le fe
be_boot_demo. binary_counter 1/16/2017 7:2 e f
binary_counter buckzx_demo 11/16/201 22 le fc
clkout 11/16/201 22 File fc te i 11/16/2017 7:22 AM
buckex_demo 1716
coremark 11/16/201 22 File fc Available offline
clkout
deepsleep 11/16/2017 7:2. Fil
coremark deepsiecp_wake 1/16/2017 7:22
deepsleep flash_write 1/16/2017 7:22
deepsieep_wake flash,_write_apollo2 11/16/2017 7:22
flash write freertos_lowpower 11/16/2017 7:2.
flash_write_apollo2 hello_fault 11/16/2017 7:22
hello_world 1/16/2017 722 A File fe
freertos_lowpower
hello_world_uart 1/16/2017 7:22 e fc

hello_fault
2c_boot_host 11/16/2017 7:22 e f

2 oapback YGaIT T2 A Fefokdr <—— APOLLO2 OTA example project

hello_world_uart

ios fifo 1/16/201 le f
i2¢_boot_host ios_fifo_host 11/16/201 le fc
i2¢_loopback itm_printf 11/16/2017 7:22 le fold
os fifo multi_boot 11/16/2017 722 ... File folder
i0s.fifo_host multi_boot_secure_sample 11/16/2017 7:2 le f

prime 1/16/2017 7:22
itm_printf ’

pwm_gen 11/16/2017 7:2. l
mutti_boot

- reset states 11/16/2017 7:22 le f

mukti_boot_secure_sample He_print 1672017 7:2 e fo
prime spi_boot_host 1/16/2017 7:22
pwm_gen stimer 11/16/2017 7:22
feset states uart_fifo_timeout 1/16/2017 7:22
c_print uart_printf 1/16/2017 7:22

ulpbench 11/16/201 le fo
spi_boot_host ’

ulpbench lfrc 1/16/201 le f
stimer

watchdog M16/2017 7:22 le fc
uart_fifo_timeout . Makefile 0t s e .

m selected

« | examples o X
Home shae View o
“ 4 > ThisPC > Local Disk(C) > AmbigMicro > AmbigSuite > boards > apollo2_evb > examples > v O Search exampl »

bsp Name Date modified Type iz multi_boot
examples e fold
P ade_lpmoded 1162017 722 A File folder File folder
adc_Ipmode0 ade_Ipmode1 1/16/2017 7:22 e f
adc_Ipmode1 ade_Ipmode2 1/16/2017 7:22 e f
adc_Ipmode2 be_boot_demo 1/16/2017 7:22 e
be_boot_demo binary_counter 11/16/2017 7:2, e f
binary_counter buckzx_demo 11/16/201 22 le fc
clkout 11/16/201 22 File fc te i 11/16/2017 7:22 AM
buckex_ demo 11716
coremark 11/16/201 22 File fc Available offline
clkout
deepsieep 11/16/2017 7:2, Fil
coremark deepsleep_wake 1116/2017 7:22
deepsleep flash,wite 11/16/2017 7:22
deepsleep_wake flash_wite_apollo2 1/16/2017 7:22
flash_write freertos_lowpower 11/16/2017 7:2,
flash_write_apollo2 hello_fauk 11/16/2017 7.2
hello_world 1162017 122 A... File f
freertos_lowpower
hello_world_uart 11/16/2017 7:22 e
hello_fault
i2c_boot_host 1/16/2017 7:22 e f
hello_worid i2c_loopback 1/16/2017 7:22 le f
hello_world_uart tos.fifo - o

i2¢_boot_host ios_fifo_host 11/16/201 le fc

i2¢_loopback itm_printf 11/16/2017 7:22 le fold

os_fifo multi_boot 11/16/2017 722 A File folder ¢ APOLLO?2 Bootloader project
i0s.fifo_host multi_boot_secure_sample 11/16/2017 7:2. e fc

prime 11612017 7:22
itm_printf ’
pwm_gen WA6R017 T2 A, §
multi_boot
B reset states 17162017 722 e o
multi_boot secure_sample . prit ot 1o o
prime spi_boot host 1162017 722
pam_gen stimer 17162017 722
resel states uartfifo_timeout /1672017 722
tc_print wart_printf 11612017 7:22
ulpbench 117167201 e fo
spi_boot_host ’
ulpbench ffrc 116/201 e fo
stimer
watchdog /672017 722 o e
wantfifo_timeout . Makefie oty e .

35items 1 item selected

FIGURE 6 FOLDER STRUCTURE

3.2 Development Environment
- Hardware:

This example runs on APOLLO+EM9304 shield board and APOLLO2-BLUE EVB, make
sure you have one available to run the example.

For details of the EVKs, please check ..\AmbigMicro\AmbiqSuite\docs\boards\apollo_evk\
apollo_evk_users_guide.pdf.

Otherwise, modifications need to be done according to the hardware setup in the BSP of
both exactle fit amota_multi_boot and freertos_amota folders.

Software:

Install the latest AmbiqSuite.

Install Python 3.x to run the helper scripts for OTA binary file generation and combination.
Install Keil MDK-ARM Plus Version 5.20 or later for code generation and debug.
iOS:
Install iTunes PC tool for iOS device APP installation and file sharing.
Visit our APP page on Apple AppStore at: https://itunes.apple.com/us/app/ambig-
ota/id11904539627mt=8
Or simply search for “Ambiq OTA” in the AppStore to install.
Android:
Install our Ambiq OTA app directly from the APK located at:
.\AmbigMicro\AmbiqSuite\tools\amota

3.3 Run the example
Navigate to the /AmbiqSuite/tools/amota/scripts folder.

Run “make” in this folder:

python3 bootloader_binary_combiner.py --bootbin "../../../boards/apollo2_evb_em9304/examp]

es/exactle_fit_amota_multi_boot/keil/bin/exactle_fit_amota_multi_boot.bin" --appbin "../..
/../boards/apollo2_evb_em9304/examples/freertos_amota/keil/bin/freertos_amota.bin" --flag-
addr 0x6000 --load-address 0x8000 -o starter_binary

boot size 12868

lpad_length 19900

load_address 0x8000 (32768)

app_size 0x13dd0 (81360)

crc = 0x4742cde0

python3 ota_binary_converter.py --appbin "./binary_counter.bin" --load-address 0x8000 -o u
pdate_binary

pad_length 48

load_address 0x8000 (0x8000)

app_size 0x19e8 (6632)

crc = 0x4147fa8d

app_ver 0 (0x0)

bin_type 0 (0x0)

str_type 0 (0x0)

Note: it will take a while to build all the required binaries for Apollo1 and Apollo2-Blue
EVB.

There are four final binaries generated from the above step:

1. starter_binary_apollol.bin, which is used to Toad into Apollol based
board.

2. starter_binary_apollo2_blue.bin, which is used to Toad into Apollo2-
Blue EVB.

3. update_binary_apollol.bin, which should be uploaded into smartphone
app to transfer it over the air to Apollol based EVB.

4. update_binary_apollo2_blue.bin, which should be uploaded into
smartphone app to transfer it over the air to Apollo2-BLUE EVB.

Load the starter_binary_apollol.bin or starter_binary_apollo2_blue.bin into
the target MCU using the J-Link Flash as follows:

" y TR oS e
s i
Eile Help
Target
Device Interface Speed
AMAPH1KK-KBR SWD 1000
Data File .bin / Erase Start
C\AmbigMicro\AmbiqSuite\tools\amota\scripts\starter_binary.bin E] 0x00000000 Erase Chip
Program Device l
Log

Programming Thread exited
Programming done

1

Ready

1

FIGURE 7 J-LINK FLASH LITE SCREENSHOT
Press the reset button to start the application.

1. i0S:
Install the iOS APP from Apple AppStore by searching for Ambiq OTA.
Once the APP is installed successfully, it will be shown on the home screen.

Android:
Install the APK from the ..\tools\amota folder. Once the APK is installed successfully,
it will be shown on the home screen.

2. Load the update_binary_apollol.bin and update_binary_apollo2_blue.bin
into the APP.
iOS: Connect the smart phone with PC, start iTunes and load the binary file into OTA
APP. With iTunes:

log axt
Ola_test_binary bin

s

Android: Enable the USB storage media device when the smart phone is connected
to PC and move the target binary file into any visible storage directory. E.g.
to ..\storage\emulated\0\Debug\ota_binary

Start OTA APP from smart phone and send the update_binary_apollol.bin or
update_binary_apollo2_blue.bin via BLE.
With iOS

w11 T-Mobile Wi-Fi 5 1:51PM @ © % 79% @M} ! T-Mobile Wi-Fi & 1:53PM @ © % 78% @M} .1 T-Mobile Wi-Fi & 1:54 PM @ 03 78% @)
ABOTA Scan Back Cordio Disconnect

_04[TV] Samsung 6 Series (70) ° Name

31CFAEBC-9BIC-DCE4-5D69-3616D4053E69 Cordio
-1Sensoro-CO . LocalName

FADA0393-4045-AEA8-9357-D499F39974DE ambigmicro ota
-s3 Sensoro-CO . Bin file

DDDB95AF-BEDB-42EB-A044-A5912D93113D Browse
_ssApple TV ° ServiceUUIDs

0A96B904-BBD3-BACE-E4F7-3AFB69B2CB3E Device Information ,
_64Sensoro-C0 ° TxPowerLevel

FEF7A9D7-1EEC-669B-B339-2AAD6131AD59 0
o A£E|e TV ° IsConnectable

8F10C3C4-6B39-0083-AEB1-6C76D6AT10EA9 1
_ssSensoro-C0 ° AllServices

9A214984-112A-4BCO-8ESD-2EE043F97061
40 Cordi °

38325Me-45CF-CF5A-AODC-D1EBBIYOBIAA
-s0Apple T' o .

A&C&%CBSA' 5D3-372F-3805-DCBDIDBDESO3 ClICk to Select
-89V1.3

197CO9AF-196)\6654-68C7-3DF34D2B7AIS L

bin file

OTA Scan and Select Cordio

) ambianici Load bin file

Ver:0.77 Log Log

211 T-Mobile Wi-Fi & 1:54 PM @ © 3 78% @) .1l T-Mobile Wi-Fi & 1:54 PM @ 0% 78% @)

Back Bin File Reload Back Update

. . Cordio Connected
binary_array_for_ota.bin Selected file update_binary_apollo2.bin

. . Bin file length 94260 bytes
binary_array_for_ota_1.bin Application software version 0.00

Binary type 0 : execution image
log.txt Storage type 0: internal flash
update_binary_apollol.bin User Settings _°
update_binary_apollo2.bin
Bin file is ready
File name:update_binary_apollo2.bin
file length:94260
P Cancel Contjg
Select bin file

Click send to device

o1l T-Mobile Wi-Fi = 1:56 PM @ 93 78% wm
Back Update

Disconnected

Appl| Device Name :
Cordio .

Store. gin file name :
update_binary_apollo2.bin .

File length :
94260 bytes .

Upgrade to version : 0.00 .

Device Speed : 2571 Bps (36.7 s).

Verify Success, Cordio : reset? Or

Result : Update verify Success.
cancel : manual reset

Cancel

Summary of

OTA

With Android:

B BLE Device Scan wror ke
N |Jl ML N O
w‘cm"h ﬂpp Dwvicn sodens HOEACAIIRE 4%
I TRSRIE L Saate Corrwctmd
Unknown device $200s Svig 014 Sar s Finwnd
L2 st acon1em
MI Band 2 . Losd SIssbberybe
e vosa Click to start and —
Fossil \
mb_PCQECX79 stop scanning
Uﬁkn&vndcwoo Click to select a
new binary Select the binary
Select our device
from the target
from the list.)
directory
e —

Click on “start

2 : After the reset, the device will
ota” and Once the progress is done,
)) . start to run the new firmware, an
monitor the a reset will be triggered by
) automatic re-connect can be
APP automatically
monitored in the APP.

Once reset command is sent to MCU, the MCU resets and enters bootloader, it will
take several seconds to load the new image into the flash.

After the new image is up and running, the LED array will blink the binary counter with
a sub pattern, which indicates the operation is successfully done.

4. Characteristics

4.1 For APOLLO MCU

Item Typ. Unit Remark

Data Transfer speed

Storage in internal flash 4.9 KB/s with iOS App V0.51

Storage in external flash 4.8 KB/s with iOS App V0.51
Resource Consumption

Bootloader code size 10.27 KB

Bootloader RAM size 5.2 KB

Flash flag page 1 KB 224 bytes

OTA project code size 89.70 KB

OTA project RAM size 7.27 KB 2KB stack
Execution Timing

Boot from internal flash 1.98 sec 89.70KB image

Boot from external flash 2.45 sec 89.70KB image@8MHz

Flash write to internal flash 4.8 msec 512bytes

Flash write to external flash 6.4 msec 256bytes @ 8MHz

4.2 For APOLLO2-BLUE MCU
Item Typ. Unit Remark

Data Transfer speed

Storage in internal flash 4.9 KB/s with iOS App V0.51

Storage in external flash 3.4 KB/s with iOS App V0.51
Resource Consumption

Bootloader code size 14.96 KB

Bootloader RAM size 17.60 KB Buffer for 1 flash page

Flash flag page 8 KB 224 bytes

OTA project code size 89.85 KB

OTA project RAM size 7.8 KB 2KB stack.
Execution Timing

Boot from internal flash 0.624 sec 91.32KB image

Boot from external flash 1.01 sec 91.32KB image@8MHz

Flash write to internal flash 1.8 msec 512bytes

Flash write to external flash 4.1 sec 256bytes@8MHz

