ARM® Cordio Stack

ARM-EPM-115880 1.0

Device Manager API

Confidential

ARM

Copyright © 2009-2016 ARM. All rights reserved. Page 1

Confidential

Device Manager API

ARM® Cordio Stack Device Manager API

Reference Manual
Copyright © 2009-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change

21 January 2016 - Confidential First Wicentric release for 1.6 as 2009-0008.
1 March 2016 A Confidential First ARM release for 1.6.

24 August 2016 A Confidential AUSPEX # / APl Update

Proprietary Notice

This document is CONFIDENTIAL and any use by you is subject to the terms of the agreement between you and ARM or the terms of
the agreement between you and the party authorised by ARM to disclose this document to you.

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any
form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to
any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the
information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology
or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or
creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for
publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this
document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or
understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to
create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without
notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version
of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.
Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2009-2016, ARM Limited or its affiliates. All rights reserved.

Copyright © 2009-2016 ARM. All rights reserved Page 2

Confidential

Device Manager API

ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status

This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with
the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Copyright © 2009-2016 ARM. All rights reserved Page 3

Confidential

Contents
ARM® Cordio Stack

1 Preface

1.1 About this book
1.1.1Intended audience
1.1.2 Using this book
1.1.3Terms and abbreviations
1.1.4Conventions
1.1.5 Additional reading

1.2 Feedback

1.2.1 Feedback on content
2 Introduction

3 Main Interface
3.1 Constants and data types
3.1.1Device Role
3.1.2 Discoverability mode
3.1.3 Advertising type
3.1.4 Address type
3.1.5 Advertising and scan intervals
3.2 Functions
3.2.1 DmRegister()
3.2.2DmFindAdType()
3.3 Callback interface
3.3.1 (*dmCback_t)()

3.3.2 Callback events
4 Advertising and Device Visibility

Copyright © 2009-2016 ARM. All rights reserved

Confidential

Device Manager API

Page 4

11
11
11
11
12
13
13
13

14

16

17
17
17
17
17
18
18
18
18
18
19
19
19

22

Device Manager API

4.1 Constants and data types 22
4.1.1 Data Location 22
4.2 Advertising data element types 22
4.3 Advertising channel map 23
4.4 Functions 24
4.4.1 DmAdvlInit() 24
4.4.2 DmExtAdvinit() 24
4.4.3 DmAdvStart() 24
4.4.4 DmAdvStop() 24
4.4.5 DmAdvSetinterval() 24
4.4.6 DmAdvSetChannelMap() 25
4.4.7 DmAdvSetData() 25
4.4.8 DmAdvSetAddrType () 25
4.4.9 DmAdvSetAdValue() 25
4.4.10 DmAdvSetName() 26
4.4.11 DmAdvPrivinit() 26
4.4.12 DmAdvPrivStart() 26
4.4.13 DmAdvPrivStop() 27
4.5 Callback interface 27
4.5.1DM_ADV_START_IND: Advertising started 27
4.5.2DM_ADV_STOP_IND: Advertising stopped 27

4.5.3DM_ADV_NEW_ADDR_IND: New resolvable address has been generated 27

5 Scanning and Device Discovery 29
5.1 Constants and data types 29
5.1.1 Scan type 29
5.2 Functions 29
5.2.1 DmScaninit() 29
5.2.2 DmExtScaninit() 29

Copyright © 2009-2016 ARM. All rights reserved Page 5

Confidential

5.2.3DmScanStart()
5.2.4DmScanStop()
5.2.5DmScanSetinterval()
5.2.6 DmScanSetAddrType ()

5.3 Callback interface

5.3.1DM_SCAN_START_IND: Scanning started
5.3.2DM_SCAN_STOP_IND: Scanning stopped

5.3.3DM_SCAN_REPORT_IND: Scan report

6 Connection Management

6.1 Constants and data types
6.1.1Client ID
6.1.2dmConnld_t
6.1.3 Connection busyl/idle state
6.1.4 Busy/ldle state bitmask

6.2 Functions
6.2.1 DmConninit()
6.2.2 DmConnMasterlnit()
6.2.3 DmExtConnMasterlnit()
6.2.4 DmConnSlavelnit()
6.2.5 DmExtConnSlavelnit()
6.2.6 DmConnRegister()
6.2.7 DmConnOpen()
6.2.8 DmConnClose()
6.2.9 DmConnAccept()

6.2.10 DmConnUpdate()

6.2.11 DmConnSetScaninterval()

6.2.12 DmConnSetConnSpec()

6.2.13 DmConnReadRssi()

Copyright © 2009-2016 ARM. All rights reserved

Confidential

Device Manager API

Page 6

29
30
30
30
31
31
31

31

32
32
32
32
32
32
33
33
33
33
33
34
34
34
34
35
35
35
36
36

6.2.14 DmRemoteConnParamReqReply()
6.2.15 DmRemoteConnParamReqNegReply()
6.2.16 DmConnSetDatalLen()
6.2.17 DmWriteAuthPayloadTimeout()
6.2.18 DmConnSecLevel()
6.2.19 DmConnSetAddrType ()
6.2.20 DmConnSetldle()
6.2.21 DmConnChecklidle()
6.3 Callback interface
6.3.1DM_CONN_OPEN_IND: Connection opened
6.3.2DM_CONN_CLOSE_IND: Connection closed
6.3.3DM_CONN_UPDATE_IND: Connection update

6.3.4DM_CONN_READ_RSSI_IND: connection RSSI read

6.3.5DM_REM_CONN_PARAM_REQ _IND: Remote connection parameter

requested

6.3.6 DM_CONN_DATA LEN_CHANGE_IND: Connection data length changed

6.3.7DM_CONN_WRITE_AUTH_TO_IND: Write authenticated payload timeout

complete

6.3.8DM_CONN_AUTH_TO_EXPIRED_IND: Authenticated payload timeout

expired

7 Local Device Management
7.1 Functions

7.1.1 DmDevReset()
7.1.2DmDevRole()
7.1.3DmDevSetRandAddr()
7.1.4DmDevWhiteListAdd()
7.1.5 DmDevWhiteListRemove()
7.1.6 DmDevWhiteListClear()

7.2 Callback interface

Copyright © 2009-2016 ARM. All rights reserved

Confidential

Device Manager API

Page 7

36
36
37
37
37
37
37
38
38
38
39
39
39

40

40

41

41

43
43
43
43
43
43
43
44

44

7.2.1DM_RESET_CMPL_IND: Reset complete

8 Security Management

8.1

8.2

Constants and data types
8.1.1 Authentication flags
8.1.2Key distribution
8.1.3Key type

8.1.4 Security level

8.1.5 Security error codes
8.1.6 Keypress types
8.1.7dmSecLtk t
8.1.8dmSeclrk_t
8.1.9dmSecCsrk t
8.1.10 dmSecKey t
Function interface

8.2.1 DmSeclnit()
8.2.2DmSecPairReq()
8.2.3DmSecPairRsp()
8.2.4DmSecCancelReq()
8.2.5DmSecAuthRsp()
8.2.6 DmSecSlaveReq()
8.2.7 DmSecEncryptReq()

8.2.8 DmSecLtkRsp()

8.2.9 DmSecSetLocalCsrk()

8.2.10 DmSecSetLocallrk()

8.2.11 DmSecLesclnit()

8.2.12 DmSecKeypressReq()

8.2.13 DmSecGenerateEccKeyReq()

8.2.14 DmSecSetEccKey()

Copyright © 2009-2016 ARM. All rights reserved

Confidential

Device Manager API

Page 8

44

45
45
45
45
45
46
46
47
47
47
47
48
48
48
48
48
49
49
49
50
50
50
50
51
51
51

51

9

Copyright © 2009-2016 ARM. All rights reserved

8.3

8.2.15 DmSecSetDebugEccKey()

8.2.16 DmSecSetOob()

8.2.17 DmSecCalcOobReq()

8.2.18 DmSecCompareRsp()

Callback interface

8.3.1DM_SEC_PAIR_CMPL_IND: Pairing complete
8.3.2DM_SEC_PAIR_FAIL_IND: Pairing failed
8.3.3DM_SEC_ENCRYPT_IND: Connection encrypted
8.3.4DM_SEC _ENCRYPT_FAIL_IND: Encryption failed
8.3.5DM_SEC_AUTH_REQ_IND: Authentication requested
8.3.6DM_SEC_KEY_IND: Key data
8.3.7DM_SEC_LTK_REQ _IND: LTK requested
8.3.8DM_SEC_PAIR_IND: Incoming pairing request
8.3.9DM_SEC_SLAVE_REQ _IND: Incoming slave security request
8.3.10 DM_SEC_CALC_OOB_IND: Out of band confirm
8.3.11 DM_SEC_ECC_KEY_IND: ECC key generation

8.3.12 DM_SEC_COMPARE_IND: Confirm comparison pairing

8.3.13 DM_SEC_KEYPRESS_IND: Keypress from peer

Privacy

9.1

Function interface

9.1.1 DmPrivinit()

9.1.2 DmPrivResolveAddr()
9.1.3DmPrivAddDevToResList()

9.1.4 DmPrivRemDevFromResList()

9.1.5 DmPrivClearResList()

9.1.6 DmPrivReadPeerResolvableAddr()
9.1.7 DmPrivReadLocalResolvableAddr ()

9.1.8 DmPrivSetAddrResEnable()

Confidential

Device Manager API

51
51
52
52
52
52
52
53
53
53
54
54
54
55
55
55
56

56

57
57
57
57
57
58
58
58
58
59

Page 9

9.1.9 DmPrivSetResolvablePrivateAddrTimeout ()

9.2 Callback interface

Device Manager API

9.2.1DM_PRIV_RESOLVED_ADDR_IND: Private address resolved

9.2.2DM_PRIV_ADD_DEV_TO_RES_LIST_IND: Device added to resolving list

9.2.3DM_PRIV_REM_DEV_FROM_RES_LIST_IND: Device removed from

resolving list

9.2.4DM_PRIV_CLEAR_RES_LIST_IND: Resolving list cleared
9.2.5DM_PRIV_READ_PEER_RES_ADDR_IND: Peer resolving address read
9.2.6 DM_PRIV_READ_LOCAL_RES _ADDR_IND: Local resolving address read

9.2.7DM_PRIV_SET_ADDR_RES_ENABLE_IND: Address resolving enable set

10 Scenarios
10.1 Advertising and scanning
10.2 Connection open and close
10.3 Pairing
10.4 Encryption
10.5 Privacy
10.6 ECC key generation

10.7 Out of Band confirm calculation

Copyright © 2009-2016 ARM. All rights reserved

Confidential

Page 10

59
59
59

59

60
60

62
62
62
63
64
65
66

67

Device Manager API

1 Preface

This preface introduces the Cordio Stack Device Manager API Reference Manual.

1.1 About this book

This document describes the Device Manager (DM) API and lists the API functions and their
parameters.

1.1.1 Intended audience

This book is written for experienced software engineers who might or might not have experience with
ARM products. Such engineers typically have experience of writing Bluetooth applications but might
have limited experience of the Cordio software stack.

It is also assumed that the readers have access to all necessary tools.

1.1.2 Using this book
This book is organized into the following chapters:

e Introduction
Read this for an overview of the API.
e Main Interface
Read this for a list of common main interfaces used in the API.
e Advertising and Device Visibility
Read this for a description advertising and device visibility functions.
e Scanning and Device Discovery
Read this for a description of scanning and device discovery functions.
e Connection Management
Read this for a description of connection management functions.
e Local Device Management
Read this for a description of local device management functions.
e Security Management
Read this for a description of security management functions.
e Privacy
Read this for a description of privacy functions.
e Scenarios
Read this for an overview of how APIs are used in different scenarios.
e Revisions
Read this chapter for descriptions of the changes between document versions.

Copyright © 2009-2016 ARM. All rights reserved Page 11

Confidential

Device Manager API

1.1.3 Terms and abbreviations
For a list of ARM terms, see the ARM glossary.

Terms specific to the Cordio software are listed below:

Term Description

ACL Asynchronous Connectionless data packet

AD Advertising Data

AE Advertising Extensions

ARQ Automatic Repeat reQuest

ATT Attribute Protocol, also attribute protocol software subsystem

ATTC Attribute Protocol Client software subsystem

ATTS Attribute Protocol Server software subsystem

CCCor CCCD Client Characteristic Configuration Descriptor

CID Connection Identifier

CSRK Connection Signature Resolving Key

DM Device Manager software subsystem

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JIT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

00OB Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem

SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.
Copyright © 2009-2016 ARM. All rights reserved Page 12

Confidential

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

1.1.4 Conventions

Device Manager API

The following table describes the typographical conventions:

Style

Italic

bold

MONOSPACE

MONOSPACE

monospace italic

monospace bold

<and>

SMALL CAPITALS

1.1.5 Additional reading

Typographical conventions
Purpose

Introduces special terminology, denotes cross-references, and
citations.

Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

Denotes language keywords when used outside example code.

Encloses replaceable terms for assembler syntax where they
appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Used in body text for a few terms that have specific technical
meanings, that are defined in the ARM® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,
and UNPREDICTABLE.

This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

¢ Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

Copyright © 2009-2016 ARM. All rights reserved Page 13

Confidential

http://infocenter.arm.com/

Device Manager API

1.2.1 Feedback on content
If you have comments on content then send an e-mail to errata@arm. com. Give:

The title.

The number, ARM-EPM-115146.

The page numbers to which your comments apply.
A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.

Copyright © 2009-2016 ARM. All rights reserved Page 14

Confidential

Device Manager API

2 Introduction

This document describes the API of the Device Manager (DM) subsystem. The device manager is
responsible for many important operations of the protocol stack such as:

e Advertising and device visibility.
e Scanning and device discovery.
e Connection management.

e Security management.

e Local device management.

Copyright © 2009-2016 ARM. All rights reserved Page 16

Confidential

Device Manager API

3 Main Interface

3.1 Constants and data types

3.1.1 Device Role
This parameter identifies the device role.

Table 1 Device role parameter

Name Value Description
DM_ROLE_MASTER 0 Role is master.
DM_ROLE_SLAVE 1 Role is slave.

3.1.2 Discoverability mode
This parameter sets the GAP discoverability mode.

Table 2 Discoverability Mode

Name Value Description

DM_DISC_MODE_NONE 0 GAP non-discoverable. Peer devices performing
GAP discovery cannot discover this device.

DM_DISC_MODE_LIMITED 1 GAP limited discoverable mode. Peer devices
performing GAP limited discovery can discover this
device.

DM_DISC_MODE_GENERAL 2 GAP general discoverable mode. Peer devices

performing GAP limited or general discovery can
discover this device.

3.1.3 Advertising type

The advertising type indicates the connectable and discoverable nature of the advertising packets
transmitted by a device.

Table 3 Advertising type

Name Value Description

DM_ADV_CONN_UNDIRECT 0 Connectable undirected advertising. Peer devices
can scan and connect to this device.

DM_ADV_CONN_DIRECT 1 Connectable directed advertising. Only a specified
peer device can connect to this device.
DM_ADV_SCAN_UNDIRECT 2 Scannable undirected advertising. Peer devices can
scan this device but cannot connect.
DM_ADV_NONCONN_UNDIRECT 3 Non-connectable undirected advertising. Peer
Copyright © 2009-2016 ARM. All rights reserved Page 17

Confidential

Device Manager API

devices cannot scan or connect to this device.

DM_ADV_CONN_DIRECT_LO_DUTY 4 Connectable directed low duty cycle advertising.

3.1.4 Address type
The address type indicates whether an address is public or random.

Table 4 Address type

Name Value Description

DM_ADDR_PUBLIC 0 Public address.

DM_ADDR_RANDOM 1 Random address.

DM_ADDR_PUBLIC_IDENTITY 2 Public identity address
DM_ADDR_RANDOM_IDENTITY 3 Random (static) identity address
DM_ADDR_RANDOM_UNRESOLVED OxFE Random device address (controller can’t resolve)
DM_ADDR_NONE OxXFF No address provided (anonymous)

3.1.5 Advertising and scan intervals
Advertising and scan intervals in this API are specified in 0.625 ms units.
3.2 Functions

3.2.1 DmRegister()
Register a callback with DM for scan and advertising events.

Syntax:
void DmRegister(dmCback_t chack)
Where:
e cback: Client callback function. See 3.3.1.

3.2.2 DmFindAdType()
Find an advertising data element in the given advertising or scan response data.

Syntax:

uint8_t *DmFindAdType(uint8_t adType, uintl6_t datalen, uint8_t *pData)

Where:
e adType: Advertising data element type to find. See 4.2.
e datalen: Data length.
e pData: Pointer to advertising or scan response data.

This function returns a pointer to the advertising data element byte array or NULL if not found.

Copyright © 2009-2016 ARM. All rights reserved Page 18

Confidential

3.3

3.3.1

Callback interface

(*dmCback_t)()

Device Manager API

This callback function sends DM events to the client.

Syntax:

void (*dmCback_t) (dmEvt_t *pDmEvt)

Where:

3.3.2

pDmEvt: Pointer to DM event structure.

Callback events

The following callback event values are passed in the DM event structure.

Table 5 Callback events

Name

Description

DM_RESET_CMPL_IND

Reset complete.

DM_ADV_START_IND

Advertising started.

DM_ADV_STOP_IND

Advertising stopped.

DM_ADV_NEW_ADDR_IND

New resolvable address has been generated.

DM_SCAN_START_IND

Scanning started.

DM_SCAN_STOP_IND

Scanning stopped.

DM_SCAN_REPORT_IND

Scan data received from peer device.

DM_CONN_OPEN_IND

Connection opened.

DM_CONN_CLOSE_IND

Connection closed.

DM_CONN_UPDATE_IND

Connection update complete.

DM_SEC_PAIR_CMPL_IND

Pairing completed successfully.

DM_SEC_PAIR_FAIL_IND

Pairing failed or other security failure.

DM_SEC_ENCRYPT_IND

Connection encrypted.

DM_SEC_ENCRYPT_FAIL_IND

Encryption failed.

DM_SEC_AUTH_REQ_IND

PIN or OOB data requested for pairing.

DM_SEC_KEY_IND

Security key indication.

DM_SEC_LTK_REQ_IND

LTK requested for encyption.

Copyright © 2009-2016 ARM. All rights reserved

Page 19

Confidential

Device Manager API

DM_SEC_PAIR_IND Incoming pairing request from master.

DM_SEC_SLAVE_REQ_IND Incoming security request from slave.

DM_SEC_CALC_OOB_IND Result of OOB Confirm Calculation Generation.

DM_SEC_ECC_KEY_IND Result of ECC Key Generation.

DM_SEC_COMPARE_IND Result of Just Works/Numeric Comparison Compare
Value calculation.

DM_SEC_KEYPRESS_IND Keypress indication from peer in passkey security.

DM_PRIV_RESOLVED_ADDR_IND Private address resolved.

DM_CONN_READ_RSSI_IND Connection RSSI read.

DM_PRIV_ADD_DEV_TO_RES_LIST_IND Device added to resolving list.

DM_PRIV_REM_DEV_FROM_RES_LIST_IND Device removed from resolving list.

DM_PRIV_CLEAR_RES_LIST_IND Resolving list cleared.

DM_PRIV_READ_PEER_RES_ADDR_IND Peer resolving address read.

DM_PRIV_READ_LOCAL_RES_ADDR_IND Local resolving address read.

DM_PRIV_SET_ADDR_RES_ENABLE_IND Address resolving enable set.

DM_REM_CONN_PARAM_REQ_IND Remote connection parameter requested.
DM_CONN_DATA_LEN_CHANGE_IND Data length changed.
DM_CONN_WRITE_AUTH_TO_IND Write authenticated payload complete.
DM_CONN_AUTH_TO_EXPIRED_IND Authenticated payload timeout expired.
DM_PHY_READ_IND Read PHY
DM_PHY_SET_DEF_IND Set default PHY
DM_PHY_UPDATE_IND PHY update
DM_ADV_SET_START_IND Advertising set(s) started
DM_ADV_SET_STOP_IND Advertising set(s) stopped
DM_SCAN_REQ_RCVD_IND Scan request received
DM_EXT_SCAN_START_IND Extended scanning started
DM_EXT_SCAN_STOP_IND Extended scanning stopped

Copyright © 2009-2016 ARM. All rights reserved Page 20

Confidential

Device Manager API

DM_EXT_SCAN_REPORT_IND Extended scan data received from peer device
DM_ERROR_IND General error.
DM_VENDOR_SPEC_IND Vendor specific event.

Copyright © 2009-2016 ARM. All rights reserved Page 21

Confidential

Device Manager API

4 Advertising and Device Visibility

The DM interface for advertising and device visibility configures, enables, and disables the advertising
procedure. A device advertises when it wishes to connect to or be discovered by other devices.

Devices may also advertise to simply bro

adcast data.

This interface can only be used when operating as a slave.

4.1 Constants and data types

4.1.1 Data Location

This parameter indicates whether data is located in the advertising data or the scan response data.

Table 6 Callback events

Name Value Description
DM_DATA_LOC_ADV 0 Locate data in the advertising data.
DM_DATA_LOC_SCAN 1 Locate data in the scan response data.

4.2 Advertising data element
This parameter indicates the type of adve

types
rtising data element.

Table 7 Advertising data element types

Name

Description

DM_ADV_TYPE_FLAGS

Flag bits.

DM_ADV_TYPE_16_UUID_PART

Partial list of 16 bit UUIDs.

DM_ADV_TYPE_16_UUID

Complete list of 16 bit UUIDs.

DM_ADV_TYPE_32_UUID_PART

Partial list of 32 bit UUIDs.

DM_ADV_TYPE_32_UUID

Complete list of 32 bit UUIDs.

DM_ADV_TYPE_128_UUID_PART

Partial list of 128 bit UUIDs.

DM_ADV_TYPE_128_UUID

Complete list of 128 bit UUIDs.

DM_ADV_TYPE_SHORT_NAME

Shortened local name.

DM_ADV_TYPE_LOCAL_NAME

Complete local name.

DM_ADV_TYPE_TX_POWER

TX power level.

DM_ADV_TYPE_SM_TK_VALUE

Security manager TK value

DM_ADV_TYPE_SM_OOB_FLAGS

Security manager OOB flags

Copyright © 2009-2016 ARM. All rights reserved

Page 22

Confidential

Device Manager API

DM_ADV_TYPE_CONN_INTERVAL

Slave preferred connection interval.

DM_ADV_TYPE_SIGNED_DATA

Signed data.

DM_ADV_TYPE_16_SOLICIT

Service solicitation list of 16 bit UUIDs.

DM_ADV_TYPE_128_SOLICIT

Service solicitation list of 128 bit UUIDs.

DM_ADV_TYPE_SERVICE_DATA

Service data.

DM_ADV_TYPE_PUBLIC_TARGET

Public target address.

DM_ADV_TYPE_RANDOM_TARGET

Random target address.

DM_ADV_TYPE_APPEARANCE

Device appearance.

DM_ADV_TYPE_ADV_INTERVAL

Advertising interval

DM_ADV_TYPE_BD_ADDR

LE Bluetooth device address

DM_ADV_TYPE_ROLE

LE role

DM_ADV_TYPE_32_SOLICIT

Service solicitation list of 32 bit UUIDs

DM_ADV_TYPE_SVC_DATA_32

Service data — 32-bit UUID

DM_ADV_TYPE_SVC_DATA_128

Service data — 128-hit UUID

DM_ADV_TYPE_LESC_CONFIRM

LE secure connection confirm value

DM_ADV_TYPE_LESC_RANDOM

LE secure connection random value

DM_ADV_TYPE_URI

URI

DM_ADV_TYPE_MANUFACTURER

Manufacturer specific data.

4.3 Advertising channel map
This parameter indicates the advertising channel map.

Table 8 Advertising channel map

Name

Description

DM_ADV_CHAN_37

Advertising channel 37.

DM_ADV_CHAN_38

Advertising channel 38.

DM_ADV_CHAN_39

Advertising channel 39.

DM_ADV_CHAN_ALL

All advertising channels.

Copyright © 2009-2016 ARM. All rights reserved

Page 23

Confidential

Device Manager API

4.4 Functions

4.4.1 DmAdvlInit()
Initialize DM advertising. This function is typically called once at system startup.

Syntax:
void DmAdvInit(void)

4.4.2 DmExtAdvlInit()
Initialize DM extended advertising. This function is typically called once at system startup.

Syntax:
void DmExtAdvInit(void)

4.4.3 DmAdvStart()
This function is called to start advertising using the given advertising set and duration.

Syntax:

void DmAdvStart(uint8_t numSets, uint8_t *pAdvHandle, uintl6_t *pDuration, uint8_t
*pMaxEaEvents)

Where:
® numSets: Number of advertising sets to enable.
e pAdvHandle: Advertising handle array.
e pDuration: Advertising duration (in milliseconds) array.
e pMaxEaEvents: Maximum number of extended advertising events array.

If advertising is started successfully the client’s callback function is called with a DM_ADV_START_IND
event. If advertising fails to start for any reason the client’s callback function is called with a
DM_ADV_STOP_IND event. The client’s callback function is also called with a DM_ADV_STOP_IND event
if the advertising duration expires or DmAdvStop () is called.

4.4.4 DmAdvStop()

This function is called to stop advertising. When advertising is stopped the client’s callback function is
called with a DM_ADV_STOP_IND event.

Syntax:

void DmAdvStop(uint8_t numSets, uint8_t *pAdvHandles)

Where:
e numSets: Number of advertising sets to enable.
e pAdvHandles: Advertising handles array.

445 DmAdvSetinterval()

This function sets the minimum and maximum advertising intervals. This function should only be
called when advertising is stopped.

Syntax:

Copyright © 2009-2016 ARM. All rights reserved Page 24

Confidential

Device Manager API

void DmAdvSetInterval(uint8_t advHandle, uintl6_t intervalMin, uintl6_t
intervalMax)

Where:
e advHandle: Advertising handle
e intervalMin: Minimum advertising interval. See 3.1.4.
e intervalMax: Maximum advertising interval. See 3.1.4.

4.4.6 DmAdvSetChannelMap()

This function is used to include or exclude certain channels from the advertising channel map. This
function should only be called when advertising is stopped.

Syntax:
void DmAdvSetChannelMap(uint8_t advHandle, uint8_t channelMap)

Where:

e advHandle: Advertising handle
e channelMap: Advertising channel map. See 4.3.

4.4.7 DmAdvSetData()

This function sets the advertising or scan response data to the given data. The data will replace any
existing data already present with the same advertising data type.

Syntax:

void DmAdvSetData(uint8_t advHandle, uint8_t op, uint8_t location, uint8_t Ten,
uint8_t *pData)

Where:
e advHandle: Advertising handle
e op: Data operation
e Tlocation: Data location. See 4.1.1.
e len: Length of the data. Maximum length is 31 bytes.
e pData: Pointer to the data.

448 DmAdvSetAddrType ()

Set the local address type used while advertising. This function can be used to configure advertising to
use a random or private address.

Syntax:

void DmAdvSetAddrType(uint8_t addrType)
Where:

e addrType: Address type. See 3.1.4.

4.49 DmAdvSetAdValue()
Set the value of an advertising data element in the given advertising or scan response data. If the

Copyright © 2009-2016 ARM. All rights reserved Page 25

Confidential

Device Manager API

element already exists in the data then it is replaced with the new value. If the element does not exist in
the data it is appended to it, space permitting.

Syntax:

Bool DmAdvSetAdValue(uint8_t adType, uint8_t len, uint8_t *pValue, uint8_t
*pAdvDatalen, uint8_t *pAdvData, uintl6_t advDataBuflLen)

Where:

e adType: Advertising data element type.

e TJen: Length of the value. Maximum length is 29 bytes.

e pvValue: Pointer to the value.

e pAdvDatalen: Advertising or scan response data length. The new length is returned in
this parameter.

e pAdvData: Pointer to advertising or scan response data.

e advDataBuflLen: Length of the advertising or scan response data buffer maintained by the
application.

Returns TRUE if the element was successfully added to the data, FALSE otherwise.

4.4.10 DmAdvSetName()

Set the device name in the given advertising or scan response data. If the name can only fit in the data
if it is shortened, the name is shortened and the AD type is changed to DM_ADV_TYPE_SHORT_NAME.

Syntax:

Bool DmAdvSetName(uint8_t len, uint8_t *pValue, uint8_t *pAdvDatalen, uint8_t
*pAdvData, uintl6_t advDataBuflLen)

Where:

e Ten: Length of the name. Maximum length is 29 bytes.

e pValue: Pointer to the name in UTF-8 format.

e pAdvDatalen: Advertising or scan response data length. The new length is returned in
this parameter.

e pAdvData: Pointer to advertising or scan response data.

e advDataBuflLen: Length of the advertising or scan response data buffer maintained by the
application.

Returns TRUE if the element was successfully added to the data, FALSE otherwise.

4.4.11 DmAdVPrivinit()

Initialize private advertising. This function is typically called once at system startup to enable the use
of advertising with a private resolvable address.

Syntax:
void DmAdvPrivInit(void)

4.4.12 DmAdvPrivStart()
Start using a private resolvable address and start periodic generation of a new address.

When a new address is generated the client’s callback function is called with a DM_ADV_NEW_ADDR_IND

Copyright © 2009-2016 ARM. All rights reserved Page 26

Confidential

Device Manager API

event. The application must wait to receive this event once before starting advertising.
To stop using a private resolvable address call function DmAdvPrivStop(Q).

This function should not be used when the device is operating as a master, as master devices are
forbidden from using a private resolvable address.

Syntax:
void DmAdvPrivStart(uintl6_t changeInterval)
Where:
e changelnterval: Interval between automatic address changes, in seconds.

4.4.13 DmAdvPrivStop()
Stop using a private resolvable address.

Syntax:

void DmAdvPrivStop(void)

4.5 Callback interface

451 DM_ADV_START_IND: Advertising started
Callback event for advertising started.

Table 9 Advertising started

Type Name Description

wsTMsgHdr_t hdr.event Callback event.

452 DM_ADV _STOP_IND: Advertising stopped
Callback event for advertising stopped.

Table 10 Advertising stopped

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

453 DM _ADV_NEW_ADDR_IND: New resolvable address has been generated
Callback event for new resolvable address has been generated.

Table 11 New resolvable address

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

bdAddr_t addr New resolvable private address.
Copyright © 2009-2016 ARM. All rights reserved Page 27

Confidential

Device Manager API

bool_t firstTime TRUE when address is generated for the first time.

Copyright © 2009-2016 ARM. All rights reserved Page 28

Confidential

Device Manager API

5 Scanning and Device Discovery

The DM scanning and device discovery interface configures, enables, and disables the scanning
procedure. A device scans when it wishes to discover or connect to other devices. A device may also
scan simply to receive broadcast advertisements.

This interface can only be used when operating as a master.

5.1 Constants and data types

5.1.1 Scan type

This parameter indicates the scan type. A passive scan only receives advertising packets. An active
scan receives advertising packets and scan response packets.

Table 12 Scan type

Name Value Description
DM_SCAN_TYPE_PASSIVE 0 Passive scan.
DM_SCAN_TYPE_ACTIVE 1 Active scan.

5.2 Functions

5.2.1 DmScanlinit()
Initialize DM scanning. This function is typically called once at system startup.

Syntax:
void DmScanInit(void)

5.2.2 DmExtScanlnit()
Initialize DM AE scanning. This function is typically called once at system startup.

Syntax:
void DmExtScanInit(void)

5.2.3 DmScanStart()

This function is called to start scanning. A scan is performed using the given discoverability mode,
scan type, and duration.

Syntax:

void DmScanStart(uint8_t scanPhys, uint8_t mode, uint8_t scanType, bool_t
filterDup, uintl6_t duration, uintl6_t period)

Where:

e scanPhys: Scanner PHYSs.
e mode: Discoverability mode. See 3.1.1.
e scanType: Scan type. See 5.1.1.

Copyright © 2009-2016 ARM. All rights reserved Page 29

Confidential

Device Manager API

e filterDup: Filter duplicates. Setto TRUE to filter duplicate responses received from the
same device. Setto FALSE to receive all responses.

e duration: The scan duration, in milliseconds. If set to zero, scanning will continue until
DmScanStop() is called.

e period: Period (only applicable to AE).

If scanning is started successfully the client’s callback function is called with a DM_SCAN_START_IND
event. If scanning fails to start for any reason the client’s callback function is called with a
DM_SCAN_STOP_IND event. The client’s callback function is also called with a DM_SCAN_STOP_IND
event if the scan duration expires or DmScanStop () is called.

Example for GAP limited discovery:
DmScanStart (HCI SCAN PHY LE 1M BIT, DM DISC MODE LIMITED,
DM SCAN TYPE ACTIVE, TRUE, 10240, 0);

Example for GAP general discovery:
DmScanStart (HCI SCAN PHY LE 1M BIT, DM DISC MODE GENERAL,
DM SCAN TYPE ACTIVE, TRUE, 10240, 0);

Example for GAP observe procedure:

DmScanStart (HCI_SCAN PHY LE 1M BIT, DM DISC MODE NONE,
DM SCAN TYPE PASSIVE, FALSE, 0, 0);

5.2.4 DmScanStop()

This function is called to stop scanning. When scanning is stopped the client’s callback function is
called with a DM_SCAN_STOP_IND event.

Syntax:
void DmScanStop(void)

5.2.5 DmScanSetinterval()

This function sets the scan interval and window. This function should only be called when scanning is
stopped.

Syntax:

void DmScanSetInterval(uint8_t scanPhy, uintl6_t scanInterval, uintl6_t
scanWindow)

Where:
e scanPhy: Scanning PHY.
e scanlInterval: The scan interval. See 3.1.4.
e scanWindow: The scan window. See 3.1.4.

5.2.6 DmScanSetAddrType ()
Set the local address type used while scanning. This function can be used to configure scanning to use

Copyright © 2009-2016 ARM. All rights reserved Page 30

Confidential

a random or private address.
Syntax:
void DmScanSetAddrType (uint8_t addrType)

Where:

e addrType: Addresstype. See 3.1.4.

5.3 Callback interface

5.3.1 DM _SCAN_START _IND: Scanning started
Callback event for scanning started.

Device Manager API

Table 13 Scanning started

Type Name Description

wsTMsgHdr_t hdr.event Callback event.

5.3.2 DM_SCAN_STOP_IND: Scanning stopped
Callback event for scanning stopped.

Table 14 Scanning stopped

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

5.3.3 DM_SCAN_REPORT_IND: Scan report

Callback event for scan report. This event uses type hcilLeAdvReportEvt_t defined in ARM Cordio

Stack API Reference Manual.

Table 15 Scan report

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

uint8_t * pData Pointer to received data.

uint8_t len Data length.

int8_t rssi RSSI of received packet.
uint8_t eventType Scan report event type. See 3.1.3.
uint8_t addrType Peer address type.

bdAddr_t addr Peer address.

Copyright © 2009-2016 ARM. All rights reserved

Confidential

Page 31

Device Manager API

6 Connection Management

The DM connection management interface is used to open, accept, configure, and close connections. It
is also used to read connection-related information such as the RSSI, channel map, and remote device
information.

6.1 Constants and data types

6.1.1 ClientID

The client ID parameter to function DmConnRegister () identifies the client to the DM connection
manager. The possible values are shown below.

Table 16 Client ID

Name Description

DM_CLIENT_ID_ATT Identifier for attribute protocol. For internal use only.
DM_CLIENT_ID_SMP Identifier for security manager protocol. For internal use only.
DM_CLIENT_ID_DM Identifier for device manager. For internal use only.
DM_CLIENT_ID_APP Identifier for the application.

DM_CLIENT_ID_L2C Identifier for L2CAP.

6.1.2 dmConnlid_t

This data type is used for the connection identifier. The connection identifier uniquely identifies the
connection.

6.1.3 Connection busy/idle state

The connection busy/idle state indicates when the connection is busy with a stack protocol procedure,
such as pairing or service discovery. The application can use this state to decide whether or not to
perform certain connection operations such as a connection parameter update.

Table 17 Connection busy/idle state

Name Description
DM_CONN_IDLE Connection is idle.
DM_CONN_BUSY Connection is busy.

6.1.4 Busy/ldle state bitmask

The connection busy/idle bitmask indicates which stack protocol procedure or application procedure is
busy.

Copyright © 2009-2016 ARM. All rights reserved Page 32

Confidential

Device Manager API

Table 18 Busy/idle state bitmask

Name Description

DM_IDLE_SMP_PAIR SMP pairing in progress.

DM_IDLE_DM_ENC DM Encryption setup in progress.
DM_IDLE_ATTS_DISC ATTS service discovery in progress.
DM_IDLE_APP_DISC App framework service discovery in progress.
DM_IDLE_USER_1 For use by user application.

DM_IDLE_USER_2 For use by user application.

DM_IDLE_USER_3 For use by user application.

DM_IDLE_USER_4 For use by user application.

6.2 Functions

6.2.1 DmConnlInit()
Initialize DM connection manager. This function is typically called once at system startup.

Syntax:
void DmConnInit(void)

6.2.2 DmConnMasterInit()

Initialize DM connection manager for operation as master. This function is typically called once at
system startup.

Syntax:
void DmConnMasterInit(void)

6.2.3 DmExtConnMasterlInit()

Initialize DM connection manager for operation as AE master. This function is typically called once at
system startup.

Syntax:
void DmExtConnMasterInit(void)

6.2.4 DmConnSlavelnit()

Initialize DM connection manager for operation as slave. This function is typically called once at
system startup.

Syntax:

void DmConnSlaveInit(void)

Copyright © 2009-2016 ARM. All rights reserved Page 33

Confidential

Device Manager API

6.2.5 DmExtConnSlavelnit()

Initialize DM connection manager for operation as AE slave. This function is typically called once at
system startup.

Syntax:
void DmExtConnSTlaveInit(void)

6.2.6 DmConnRegister()

This function is called by a client to register with the DM connection manager. After registering the
client can call other functions in the API to open, close, update or accept a connection. The client will
also receive DM connection events via its callback for all connections, whether or not initiated by the
client.

Syntax:
void DmConnRegister(uint8_t clientId, dmCback_t cbhack)

Where:

e clientId: The client identifier. See 6.1.1.
e cback: Client callback function. See 3.3.1.

6.2.7 DmConnOpen()

This function opens a connection to a peer device with the given address. This function can only be
called when operating as a master.

Syntax:

dmConnId_t dmConnId_t DmConnOpen(uint8_t clientId, uint8_t initPhys, uint8_t
addrType, uint8_t *pAddr)

Where:
e clientlId: The client identifier. See 6.1.1.
e initPhys: PHYs initialized for use.
e addrType: Address type. See 3.1.4.
e pAddr: Peer device address.

This function returns a connection identifier. When the connection is opened the client’s callback
function is called with a DM_CONN_OPEN_IND event. If the connection fails for any reason the client’s
callback function is called with a DM_CONN_CLOSE_IND event.

6.2.8 DmConnClose()

This function closes the connection with the give connection identifier. This function can be called
when operating as a master or slave.

Syntax:
void DmConnClose(uint8_t clientId, dmConnId_t connId, uint8_t reason)

Where:

e clientld: The client identifier. See 6.1.1.

Copyright © 2009-2016 ARM. All rights reserved Page 34

Confidential

Device Manager API

e connId: Connection identifier. See 6.1.2.
e reason: Reason connection is being closed.

When the connection is closed the client’s callback function is called with a DM_CONN_CLOSE_IND
event.

6.2.9 DmConnAccept()

This function accepts a connection from the given peer device by initiating directed advertising. This
function can only be called when operating as a slave.

Syntax:

dmConnId_t DmConnAccept(uint8_t clientId, uint8_t advHandle, uint8_t advType,
uintl6e_t duration, uint8_t maxEaEvents, uint8_t addrType, uint8_t

*pAddr)
Where:
e clientId: The client identifier. See 6.1.1.
e advHandle: Advertising handle.
e advType: Advertising type. See 3.1.3.
e duration: Advertising duration.
e maxEaEvents: Maximum number of extended advertising events.
e addrType: Address type. See 3.1.4.
e pAddr: Peer device address.

This function returns a connection identifier. When the connection is opened the client’s callback
function is called with a DM_CONN_OPEN_IND event. If the connection fails for any reason or if the
connection is not opened within 1.28 seconds the client’s callback function is called with a
DM_CONN_CLOSE_IND event.

6.2.10 DmConnUpdate()

This function updates the connection parameters of an open connection. This function can be called
when operating as a master or a slave.

Syntax:
void DmConnUpdate(dmConnId_t connId, hciConnSpec_t *pConnSpec)

Where:

e connIld: Connection identifier. See 6.1.2.
e pConnSpec: Connection specification. See the ARM Cordio Stack API Reference Manual.

6.2.11 DmConnSetScaninterval()

This function sets the scan interval and window for created connections created with DmConnOpen ().
This function must be called before calling bmConnOpen () for the parameters to be in effect.

Syntax:

void DmConnSetScanInterval (uint8_t initPhy, uintl6_t scanInterval, uintl6_t
scanWindow)

Where:

Copyright © 2009-2016 ARM. All rights reserved Page 35

Confidential

Device Manager API

e initPhy: The initiator PHY.
e scanlnterval: The scan interval. See 3.1.4.
e scanWindow: The scan window. See 3.1.4.

6.2.12 DmConnSetConnSpec()

This function sets the connection specification parameters for connections created with DmConnOpen().
This function must be called before calling bmConnOpen () for the parameters to be in effect.

Syntax:
void DmConnSetConnSpec(hciConnSpec_t *pConnSpec)
Where:
e pConnSpec: Connection specification. See the ARM Cordio Stack APl Reference Manual.

6.2.13 DmConnReadRssi()
This function reads RSSI of a given connection.

Syntax:
void DmConnReadRssi (dmConnId_t connId)

Where:
e connld: Connection identifier. See 6.1.2.

6.2.14 DmRemoteConnParamRegReply()

Reply to the HCI remote connection parameter request event. This command is used to indicate that
the Host has accepted the remote device’s request to change connection parameters.

Syntax:
void DmRemoteConnParamReqReply(dmConnId_t connId , hciConnSpec_t *pConnSpec)

Where:

e connld: Connection identifier. See 6.1.2.
e pConnSpec: Connection specification. See the ARM Cordio Stack APl Reference Manual.

6.2.15 DmRemoteConnParamReqNegReply()

Negative reply to the HCI remote connection parameter request event. This command is used to
indicate that the Host has rejected the remote device’s request to change connection parameters.

Syntax:

void DmRemoteConnParamReqNegReply(dmConnId_t connId , uint8_t reason)

Where:
e connld: Connection identifier. See 6.1.2.
e reason: Reason for rejection.
Copyright © 2009-2016 ARM. All rights reserved Page 36

Confidential

Device Manager API

6.2.16 DmConnSetDatalen()
This function sets the data length for a given connection.

Syntax:

void DmConnSetDatalLen(dmConnId_t connId , uintl6_t txOctets, uintl6_t txTime)

Where:
e connld: Connection identifier. See 6.1.2.
e txOctets: Maximum number of payload octets for a Data PDU.
e txTime: Maximum number of microseconds for a Data PDU.

6.2.17 DmWriteAuthPayload Timeout()
This function sets authenticated payload timeout for a given connection.

Syntax:

void DmWriteAuthPayloadTimeout(dmConnId_t connId, uintl6_t timeout)

Where:
e connld: Connection identifier. See 6.1.2.
e timeout: Timeout period in units of 10ms.

6.2.18 DmConnSecLevel()
Return the security level of the connection.

Syntax:
uint8_t DmConnSecLevel (dmConnId_t connld)
Where:

e connld: Connection identifier. See 6.1.2.

6.2.19 DmConnSetAddrType ()

Set the local address type used for connections created with DmConnOpen (). This function can be used
to create connections using a random or private address.

Syntax:

void DmConnSetAddrType (uint8_t addrType)
Where:

e addrType: Address type. See 3.1.4.

6.2.20 DmConnSetldle()
Configure a bit in the connection idle state mask as busy or idle.

Syntax:

Copyright © 2009-2016 ARM. All rights reserved Page 37

Confidential

Device Manager API

void DmConnSetIdle(dmConnId_t connId, uintl6_t idleMask, uint8_t idle)

Where:
e connld: Connection identifier. See 6.1.2.
e idleMask: Bit in the idle state mask to configure. See 6.1.4.
e idle: DM_CONN_BUSY or DM_CONN_IDLE. See 6.1.3.

6.2.21 DmConnCheckldle()
Check if a connection is idle.

Syntax:

uintl6_t DmConnCheckIdle(dmConnId_t connId)

Where:

e connId: Connection identifier. See 6.1.2.

This function returns zero if the connection is idle or nonzero if busy.

6.3 Callback interface

6.3.1 DM_CONN_OPEN_IND: Connection opened
Callback event for connection opened. This event uses type hciLeConnCmplEvt_t defined in ARM

Cordio Stack API Reference Manual.

Table 19 Connection opened

Type Name Description
wsTMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.param Connection identifier.
uint8_t Status Connection status
uintl6_t handle Connection handle.
uint8_t role Connection role.
uint8_t addrType Address type.
bdAddr_t peerAddr Peer address.
uintl6_t connInterval Connection interval.
uintlé_t connLatency Connection latency.
uintlé_t supTimeout Connection supervision timeout.
uint8_t clockAccuracy Peer clock accuracy.

Copyright © 2009-2016 ARM. All rights reserved

Page 38

Confidential

Device Manager API

6.3.2 DM_CONN_CLOSE_IND: Connection closed
Callback event for connection closed. This event uses type hciDisconnectCmp1Evt_t defined in the

ARM Cordio Stack APl Reference Manual.

Table 20 Connection closed

Type Name Description
wsTMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.param Connection identifier.
uint8_t status Connection status
uintlé_t handle Connection handle.
uint8_t reason Disconnect reason.

6.3.3 DM_CONN_UPDATE_IND: Connection update

Callback event for connection update complete. This event uses type hcilLeConnUpdateCmplEvt_t
defined in the ARM Cordio Stack API Reference Manual.

Table 21 Connection update

Type Name Description

wsTMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t status Status of connection update procedure.
uintlée_t handle Connection handle.

uintle_t connInterval Connection interval.

uintlé_t connlLatency Connection latency.

uintl6_t supTimeout Supervision timeout.

6.3.4 DM_CONN_READ_RSSI_IND: connection RSSI read
Callback event for reading connection RSSI. This event uses type hciReadRssiCmdCmp1Evt_t defined

in the ARM Cordio Stack APl Reference Manual.

Table 22 RSSI read

Type Name Description
wsfMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.param Connection identifier.
uint8_t status Status of procedure.

Copyright © 2009-2016 ARM. All rights reserved

Page 39

Confidential

Device Manager API

uintl6_t handle Connection handle.

uint8_t rssi RSSI.

6.3.5 DM_REM_CONN_PARAM_REQ _IND: Remote connection parameter requested

Callback event for remote connection parameter requested. This event uses type
hciLeRemConnParamReqEvt_t defined in the ARM Cordio Stack APl Reference Manual.

Table 23 Remote connection parameter requested

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uintlé_t handle Connection handle.

uintlé_t intervalMin Minimum value of the connection interval requested
by the remote device.

uintl6_t intervalMax Maximum value of the connection interval requested
by the remote device.

uintlée_t latency Maximum allowed slave latency for the connection
specified as the number of connection events
requested by the remote device.

uintl6e_t timeout Supervision timeout for the connection requested by

the remote device.

6.3.6 DM_CONN_DATA _LEN_CHANGE_IND: Connection data length changed

Callback event for data length changed. This event uses type hciLeDatalLenChangeEvt_t defined in the
ARM Cordio Stack API Reference Manual.

Table 24 Connection data length changed

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uintlé_t handle Connection handle.

uintl6_t maxTxOctets The maximum number of payload octets in a Link
Layer Data Channel PDU that the local Controller
will send on this connection.

uintlée_t maxTxTime The maximum time that the local Controller will take

to send a Link Layer Data Channel PDU on this

Copyright © 2009-2016 ARM. All rights reserved

Page 40

Confidential

Device Manager API

connection.

uintlé_t maxRxOctets The maximum number of payload octets in a Link
Layer Data Channel PDU that the local controller
expects to receive on this connection.

uintlé_t maxRxTime The maximum time that the local Controller expects
to take to receive a Link Layer Data Channel PDU on
this connection.

6.3.7 DM_CONN_WRITE_AUTH_TO_IND: Write authenticated payload timeout complete

Callback event for write authenticated payload timeout complete. This event uses type
hciWriteAuthPayloadToCmdCmplEvt_t defined in the ARM Cordio Stack API Reference Manual.

Table 25 Write authenticated payload timeout complete

Type Name Description
wsTMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.param Connection identifier.
uint8_t hdr.status Status of procedure.
uint8_t status Status of procedure.
uintlée_t handle Connection handle.

6.3.8 DM_CONN_AUTH_TO_EXPIRED_IND: Authenticated payload timeout expired

Callback event for authenticated payload timeout expired. This event uses type
hciAuthPayloadToExpiredEvt_t defined in the ARM Cordio Stack API Reference Manual.

Table 26 Authenticated payload timeout expired

Type Name Description
wsfMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.param Connection identifier.
uint8_t hdr.status Status of procedure.
uintl6_t handle Connection handle.
Copyright © 2009-2016 ARM. All rights reserved Page 41

Confidential

Device Manager API

Copyright © 2009-2016 ARM. All rights reserved Page 42

Confidential

Device Manager API

7 Local Device Management

The DM local device management interface is used for initialization and reset, setting local parameters,
sending vendor-specific commands, and LE GAP attribute management.

7.1 Functions

7.1.1 DmbDevReset()

This function initiates the HCI reset sequence. When the reset sequence is complete the client’s
callback function is called with a DM_RESET_CMPL_IND event.

Syntax:

void DmDevReset(void)

7.1.2 DmbDevRole()
This function returns the device role indicating master or slave. See 3.1.1.

Syntax:
uint8_t DmDevRole(void)

7.1.3 DmbDevSetRandAddr()
Set the random address to be used by the local device.

Syntax:
void DmDevSetRandAddr(uint8_t *pAddr)

Where:
e pAddr: Random address.

7.1.4 DmDevWhiteListAdd()

Add a peer device to the white list. Note that this function cannot be called while advertising,
scanning, or connecting with white list filtering active.

Syntax:
void DmDevWhitelListAdd(uint8_t addrType, uint8_t *pAddr)

Where:

e addrType: Addresstype. See 3.1.4.
e pAddr: Peer device address.

7.1.5 DmDevWhiteListRemove()

Remove a peer device from the white list. Note that this function cannot be called while advertising,
scanning, or connecting with white list filtering active.

Syntax:

void DmDevWhitelListRemove(uint8_t addrType, uint8_t *pAddr)

Copyright © 2009-2016 ARM. All rights reserved Page 43

Confidential

Device Manager API

Where:

e addrType: Addresstype. See 3.1.4.
e pAddr: Peer device address.

7.1.6 DmDevWhiteL.istClear()

Clear the white list. Note that this function cannot be called while advertising, scanning, or connecting
with white list filtering active.

Syntax:

void DmDevWhiteListClear(void)

7.2 Callback interface

7.21 DM_RESET_CMPL_IND: Reset complete
Callback event for reset complete.

Table 27 Reset complete

Type Name Description
wsTMsgHdr_t hdr.event Callback event.
Copyright © 2009-2016 ARM. All rights reserved Page 44

Confidential

8 Security Management

The DM security management interface is used for pairing, authentication, and encryption.

8.1 Constants and data types

8.1.1 Authentication flags

Device Manager API

This parameter contains the authentication flags of a procedure or its associated data.

Table 28 Authentication flags

Name Value Description

DM_AUTH_BOND_FLAG 0x01 Bonding requested.
DM_AUTH_MITM_FLAG 0x04 MITM (authenticated pairing) requested.
DM_AUTH_SC_FLAG 0x08 LE Secure Connections requested
DM_AUTH_KP_FLAG 0x10 Keypress notification requested

8.1.2 Key distribution

This parameter contains a bit mask of the keys distributed during the pairing procedure.

Table 29 Key distribution

Name Value Description

DM_KEY_DIST_LTK 0x01 Distribute LTK used for encryption.
DM_KEY_DIST_IRK 0x02 Distribute IRK used for privacy.
DM_KEY_DIST_CSRK 0x04 Distribute CSRK used for signed data.

8.1.3 Key type

This parameter indicates the key type used in DM_SEC_KEY_IND.

Table 30 Key type

Name

Description

DM_KEY_LOCAL_LTK

LTK generated locally for this device.

DM_KEY_PEER_LTK

LTK received from peer device.

DM_KEY_IRK

IRK and identity info of peer device.

DM_KEY_CSRK

CSRK of peer device.

Copyright © 2009-2016 ARM. All rights reserved

Page 45

Confidential

8.1.4 Security level

Device Manager API

This parameter indicates the security level of a connection.

Table 31 Security level

Name

Description

DM_SEC_LEVEL_NONE

Connection has no security.

DM_SEC_LEVEL_ENC

Connection is encrypted with unauthenticated key.

DM_SEC_LEVEL_ENC_AUTH

Connection is encrypted with authenticated key.

DM_SEC_LEVEL_ENC_LESC

Connection is encrypted with LE Secure Connections.

8.1.5 Security error codes

These error codes can be used in the status parameter of security functions and callback event

structures.
Table 32 Security error codes

Name Value Description
SMP_ERR_PASSKEY_ENTRY 0x01 User input of passkey failed.
SMP_ERR_OOB 0x02 OOB data is not available.
SMP_ERR_AUTH_REQ 0x03 Authentication requirements cannot be met.
SMP_ERR_CONFIRM_VALUE 0x04 Confirm value does not match.
SMP_ERR_PATRING_NOT_SUP 0x05 Pairing is not supported by the device.
SMP_ERR_ENC_KEY_SIZE 0x06 Insufficient encryption key size.
SMP_ERR_COMMAND_NOT_SUP 0x07 Command not supported.
SMP_ERR_UNSPECIFIED 0x08 Unspecified reason.
SMP_ERR_ATTEMPTS 0x09 Repeated attempts.
SMP_ERR_INVALID_PARAM 0x0A Invalid parameter or command length.
SMP_ERR_DH_KEY_CHECK 0x0B DH Key check did not match
SMP_ERR_NUMERIC_COMPARISON 0x0C Numeric comparison did not match

SMP_ERR_BR_EDR_IN_PROGRESS

0x0D BR/EDR in progress

SMP_ERR_CROSS_TRANSPORT OxO0E BR/EDR Cross transport key generation not allowed
SMP_ERR_MEMORY OxEO Out of memory.
Copyright © 2009-2016 ARM. All rights reserved Page 46

Confidential

Device Manager API

SMP_ERR_TIMEOUT OxE1l

Transaction timeout.

8.1.6 Keypress types

These values are used in to notify the peer of a keypress event types.

Table 33 Keypress types

Name Value Description
SMP_PASSKEY_ENTRY_STARTED 0x00 Passkey entry started keypress type.
SMP_PASSKEY_DIGIT_ENTERED 0x01 Passkey digit entered keypress type
SMP_PASSKEY_DIGIT_ERASED 0x02 Passkey digit erased keypress type
SMP_PASSKEY_CLEARED 0x03 Passkey cleared keypress type

SMP_PASSKEY_ENTRY_COMPLETED 0x04

Passkey entry complete keypress type

8.1.7 dmSecLtk t
This data structure is the LTK data type.

Table 34 LTK data type

Type Name Description

uint8_t key [SMP_KEY_LEN] Key.

uint8_t * rand [SMP_RAND8_LEN] Random identifier for key.
uintlée_t ediv Diversifier for key.

8.1.8 dmSeclrk_t
This data structure is the IRK data type.

Table 35 IRK data type

Type Name Description

uint8_t key [SMP_KEY_LEN] Key.

bdAddr_t bdAddr Peer device address.
uint8_t addrType Peer device address type.

8.1.9 dmSecCsrk_t
This data structure is the CSRK data type.

Copyright © 2009-2016 ARM. All rights reserved

Page 47

Confidential

Device Manager API

Table 36 CSRK data type

Type Name Description

uint8_t key [SMP_KEY_LEN] Key.

8.1.10 dmSecKey t
This data structure is a union of key types.

Table 37 dmSecKey _t type

Type Name Description
dmSecLtk_t Ttk LTK.
dmSecIrk_t irk IRK.
dmSecCsrk_t csrk CSRK.

8.2 Function interface

8.2.1 DmSeclnit()
Initialize DM security manager. This function is typically called once at system startup.

Syntax:
void DmSecInit(void)

8.2.2 DmSecPairReq()
This function is called by a master device to initiate pairing.

Syntax:

void DmSecPairReq(dmConnId_t connlId, bool_t oob, uint8_t auth, uint8_t iKeyDist,
uint8_t rKeyDist)

Where:
e connId: Connection identifier. See 6.1.2.
e oob: Out-of-band pairing data present or not present.
e auth: Authentication and bonding flags. See 8.1.1.
e iKeyDist: Initiator key distribution flags. See 8.1.2.
e rKeyDist: Responder key distribution flags. See 8.1.2.

When the pairing procedure is complete the client’s callback function is called with a
DM_SEC_PAIR_CMPL_IND event if successful or a DM_SEC_PAIR_FAIL_IND if failure.

8.2.3 DmSecPairRsp()

This function is called by a slave device to proceed with pairing after a DM_SEC_PAIR_IND event is
received. This function must be called within 30 seconds of receiving the event otherwise the
procedure will time out.

Copyright © 2009-2016 ARM. All rights reserved Page 48

Confidential

Device Manager API

Syntax:

void DmSecPairRsp(dmConnId_t connlId, bool_t oob, uint8_t auth, uint8_t iKeyDist,
uint8_t rKeyDist)

Where:

e connId: Connection identifier. See 6.1.2.

e oob: Out-of-band pairing data present or not present.

e auth: Authentication and bonding flags. See 8.1.1.

e iKeyDist: Initiator key distribution flags. See 8.1.2.

e rKeyDist: Responder key distribution flags. See 8.1.2.

When the pairing procedure is complete the client’s callback function is called with a
DM_SEC_PAIR_CMPL_IND event if successful or a DM_SEC_PAIR_FAIL_IND if failure.

8.2.4 DmSecCancelReq()
This function is called to cancel the pairing process.

Syntax:
void DmSecCancelReq(dmConnId_t connId, uint8_t reason)

Where:

e connId: Connection identifier. See 6.1.2.
e reason: Failure reason. See 8.1.5.

8.2.5 DmSecAuthRsp()

This function is called in response to a DM_SEC_AUTH_REQ_IND event to provide PIN or OOB data
during pairing.

Syntax:
void DmSecAuthRsp(dmConnId_t connld, uint8_t authDatalen, uint8_t *pAuthData)

Where:

e connId: Connection identifier. See 6.1.2.

e authDatalLen: Length of PIN or OOB data. Setto 3 if PIN is used or 16 if OOB data is used.

e pAuthData: Pointer to PIN or OOB data. If PIN is used, this points to a byte array containing a
24-bit integer in little endian format.

8.2.6 DmSecSlaveReq()
This function is called by a slave device to request that the master initiates pairing or link encryption.

Syntax:
void DmSecSlaveReq(dmConnId_t connId, uint8_t auth)
Where:

e connId: Connection identifier. See 6.1.2.
e auth: Authentication and bonding flags. See 8.1.1.

Copyright © 2009-2016 ARM. All rights reserved Page 49

Confidential

Device Manager API

8.2.7 DmSecEncryptReq()
This function is called by a master device to initiate link encryption.

Syntax:
void DmSecEncryptReq(dmConnId_t connld, uint8_t seclLevel, dmSecLtk_t *pLtk)

Where:

e connId: Connection identifier. See 6.1.2.
e seclevel: Security level of pairing when LTK was exchanged. See 8.1.4.
e pLtk: Pointer to LTK parameter structure.

When the encryption procedure is complete the client’s callback function is called with a
DM_ENCRYPT_IND event if successful or a DM_ENCRYPT_FAIL_IND if failure.

8.2.8 DmSecLtkRsp()

This function is called by a slave in response to a DM_SEC_LTK_REQ_IND event to provide the long term
key used for encryption.

Syntax:
void DmSeclLtkRsp(dmConnId_t connId, bool_t keyFound, uint8_t seclLevel, uint8_t
*pKey)
Where:
e connId: Connection identifier. See 6.1.2.
e keyFound: TRUE if key found.
e seclevel: Security level of pairing when LTK was exchanged. See 8.1.4.
e pKey: Pointer to the key, if found.

8.2.9 DmSecSetLocalCsrk()
This function sets the local CSRK used by the device.

Syntax:

void DmSecSetlLocalCsrk(uint8_t *pCsrk)
Where:

e pCsrk: Pointer to CSRK.

8.2.10 DmSecSetLocallrk()
This function sets the local IRK used by the device.

Syntax:
void DmSecSetlLocalIrk(uint8_t *pIrk)
Where:

e pIrk: Pointerto IRK.

Copyright © 2009-2016 ARM. All rights reserved Page 50

Confidential

Device Manager API

8.2.11 DmSecLesclnit()
This function is called to initialize the LE Secure Connections subsystem.

Syntax:
void DmSecLescInit(void)

8.2.12 DmSecKeypressReq()

This function can be used to send a keypress request command to the peer device during LE Secure
Connections Passkey Security.

Syntax:

void DmSecKeypressReq(dmConnId_t connld, uint8_t keypressType)

Where:

e ConnId: Connection identifier. See 6.1.2.
e KeypressType: Type of keypress reported to peer. See 8.1.6.

8.2.13 DmSecGenerateEccKeyReq()

This function is called to generate an ECC Key for use in LE Secure Connections. The application is
notified of the result of the generate ECC key operation via the DM_SEC_ECC_KEY_IND event.

Syntax:
void DmSecGenerateEccKeyReq(void)

8.2.14 DmSecSetEccKey()
This function is called to set the ECC key used in LE Secure Connections.

Syntax:

void DmSecSetEccKey(wsfSecEccKey_t *pKey)
Where:

e pKey: Pointer to the ECC key.

8.2.15 DmSecSetDebugEccKey()
This function is called to set the ECC key used in LE Secure Connections.

Syntax:
void DmSecSetDebugEccKey(void)

8.2.16 DmSecSetOob()

This function is called to set the Out of Band configuration containing the local and remote confirm and
random values for LE Secure Connections Security.

Syntax:

void DmSecSetOob(dmConnId_t connId, dmSecLescOobCfg_t *pConfig)

Copyright © 2009-2016 ARM. All rights reserved Page 51

Confidential

Device Manager API

Where:

e ConnId: Connection identifier. See 6.1.2.
e pConfig: The OOB configuration.

8.2.17 DmSecCalcOobReq()

This function is used to calculate the local confirm value used in Out of Band LE Secure Connections
Security.

Syntax:
void DmSecCalcOobReq(uint8_t *pRand, uint8_t *pPubKeyX)

Where:

e pRand: A 128-bit random value.
e pPubKeyX: The X component of the ECC public key.

8.2.18 DmSecCompareRsp()

This function is used to indicate the LE Secure Connections Numeric Comparison value is valid or
invalid. Itis typically called in response to a DM_SEC_COMPARE_IND event.

Syntax:
void DmSecCompareRsp(dmConnId_t connId, bool_t valid)

Where:

e ConnId: Connection identifier. See 6.1.2.
e valid: TRUE if the compare value is correct, else FALSE.

8.3 Callback interface

8.3.1 DM _SEC PAIR_CMPL_IND: Pairing complete
Callback event for pairing complete. This event uses type dmSecPairCmp1IndEvt_t.

Table 38 Pairing complete

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t auth Authentication and bonding flags. See 8.1.1.

8.3.2 DM_SEC_PAIR_FAIL_IND: Pairing failed
Callback event for pairing failed. This event uses type wsfMsgHdr_t.

Copyright © 2009-2016 ARM. All rights reserved Page 52

Confidential

Device Manager API

Table 39 Pairing failed

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.
wsfMsgHdr_t hdr.status Pairing failure status. See 8.1.5.

8.3.3 DM_SEC_ENCRYPT_IND: Connection encrypted
Callback event for connection encrypted. This event uses type dmSecEncryptIndEvt_t.

Table 40 Connection encrypted

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

bool_t usinglLtk TRUE if connection encrypted with LTK.

8.34 DM _SEC ENCRYPT_FAIL_IND: Encryption failed
Callback event for encryption failed. This event uses type wsfMsgHdr_t.

Table 41 Encryption failed

Type Name Description

wsTMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.
wsfMsgHdr_t hdr.status Encryption failure status. See 8.1.5.

8.35 DM _SEC AUTH_REQ_IND: Authentication requested

Callback event for PIN or OOB data requested for pairing. This event uses type
dmSecAuthReqIndEvt_t.

Table 42 Authentication requested

Type Name Description
wsfMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.param Connection identifier.
bool_t oob Out-of-band data requested.
Copyright © 2009-2016 ARM. All rights reserved Page 53

Confidential

Device Manager API

bool_t display

TRUE if PIN is to be displayed.

If OOB is TRUE, the client should call bmSecAuthRsp () with OOB data, if available. If display is
TRUE, the client will typically generate and display a random PIN and call DmSecAuthRsp() with this
PIN. If display is FALSE, the client will typically prompt the user to enter a PIN and call

DmSecAuthRsp () with this PIN.

8.3.6 DM_SEC_KEY_IND: Key data

Callback event for key data indication. This event uses data type dmSecKeyIndEvt_t.

Table 43 Key data

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

dmSecKey_t keyData Key data.

uint8_t type Key type. See 8.1.3.

uint8_t secLevel Security level of pairing when key was exchanged.
See 8.1.4.

uint8_t encKeylLen Length of encryption key used when data was

transferred.

8.3.7 DM _SEC LTK REQ_IND: LTK requested
Callback event for LTK requested. This event uses data type hciLeLtkRegEvt _t.

Table 44 LTK requested

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uintlé_t handle Connection handle

uint8_t randNum[HCI_RAND_LEN] Random number associated with key
uintlé_t encDiversifier Encryption diversifier associated with key

8.3.8 DM_SEC_PAIR_IND: Incoming pairing request
Callback event for incoming pairing request. This event uses type dmSecPairIndEvt_t.

Copyright © 2009-2016 ARM. All rights reserved

Page 54

Confidential

Device Manager API

Table 45 Incoming pairing requested

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t auth Authentication and bonding flags. See 8.1.1.
bool_t oob Out-of-band pairing data present or not present.
uint8_t iKeyDist Initiator key distribution flags. See 8.1.2.
uint8_t rkeyDist Responder key distribution flags. See 8.1.2.

8.3.9 DM _SEC SLAVE_REQ_IND: Incoming slave security request
Callback event for incoming slave security request. This event uses type dmSecPairIndEvt_t.

Table 46 Incoming slave security request

Type Name Description

wsTMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.

uint8_t auth Authentication and bonding flags. See 8.1.1.

8.3.10 DM_SEC _CALC _OOB_IND: Out of band confirm
Callback with the result of an Out Of Band confirm calculation. This event uses type

dmSecOobCalcIndEvt_t.

Table 47 Out of band confirm

Type Name Description
wsfMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.status Encryption failure status. See 8.1.5.

uint8_t confirm[SMP_CONFIRM_LEN]

Local confirm value.

uint8_t random [SMP_RANDOM_LEN]

Local random value.

8.3.11 DM_SEC_ECC_KEY_IND: ECC key generation
Callback with the result of an ECC Key generation. This event uses type wsfSecEccMsg_t.

Copyright © 2009-2016 ARM. All rights reserved

Page 55

Confidential

Device Manager API

Table 48 ECC key generation

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.param Connection identifier.
wsfMsgHdr_t hdr.status Key generation status.

uint8_t pubKey_x X component of the public key.

[WSF_ECC_KEY_LEN]

uint8_t pubKey_y Y component of the public key.
[WSF_ECC_KEY_LEN]

uint8_t privKey[WSF_ECC_KEY_LEN] Private key.

8.3.12 DM_SEC_COMPARE_IND: Confirm comparison pairing

Callback with the confirm value during Numeric Comparison LE Secure Connections pairing. This
event uses type dmSecCnfIndEvt_t.

Table 49 Numeric comparison pairing

Type Name Description
wsTMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.param Connection identifier.
uint8_t confirm[SMP_CONFIRM_LEN] Local confirm value.

8.3.13 DM_SEC_KEYPRESS_IND: Keypress from peer

Callback when peer receives a keypress command from the peer during LE Secure Connections
passkey pairing. This event uses type dmSecKeypressIndEvt_t.

Table 50 Keypress indication

Type Name Description
wsfMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.param Connection identifier.
uint8_t notificationType Type of keypress.
Copyright © 2009-2016 ARM. All rights reserved Page 56

Confidential

Device Manager API

9 Privacy

The DM Privacy interface is used by a master or slave device for private address resolution.

9.1 Function interface

9.1.1 DmPrivinit()
Initialize DM privacy module. This function is typically called once at system startup.

Syntax:
void DmPrivInit(void)

9.1.2 DmPrivResolveAddr()

Resolve a private resolvable address. When complete the client's callback function is called with a
DM_PRIV_RESOLVED_ADDR_IND event. The client must wait to receive this event before executing this
function again.

Syntax:
void DmPrivResolveAddr(uint8_t *pAddr, uint8_t *pIrk, uintl6_t param)

Where:

e pAddr: Peer device address.
e pIrk: The peer's identity resolving key.
e Param: Client-defined parameter returned with callback event.

9.1.3 DmPrivAddDevToResL.ist()

Add device to resolving list. When complete the client's callback function is called with a
DM_PRIV_ADD_DEV_TO_RES_LIST_IND event. The client must wait to receive this event before
executing this function again.

If the local or peer IRK associated with the peer Identity Address is all zeros then the LL will use or
accept the local or peer Identity Address.

Note: enableL1Priv should be set to TRUE when the last device is being added to resolving list.
Syntax:

void DmPrivAddDevToResList(uint8_t addrType, const uint8_t *pIdentityAddr,
uint8_t *pPeerIrk, uint8_t *plLocallrk, bool_t enablelLl1Priv, uintl6_t
param)

Where:

addrType: Peer identity address type.

pIdentityAddr: Peer identity address.

pPeerIrk: The peer's identity resolving key.

pLocalIrk: The local identity resolving key.

enablelL1Priv: Setto TRUE to enable address resolution in LL.
param: Client-defined parameter returned with callback event.

Copyright © 2009-2016 ARM. All rights reserved Page 57

Confidential

Device Manager API

9.1.4 DmPrivRemDevFromResL.ist()

Remove device from resolving list. When complete the client’s callback function is called with a
DM_PRIV_REM_DEV_FROM_RES_LIST_IND event. The client must wait to receive this event before
executing this function again.

Syntax:

void DmPrivRemDevFromResList(uint8_t addrType, const uint8_t *pIldentityAddr,
uintl6é_t param)

Where:

e addrTypePeer: ldentity address type.
e pIdentityAddr: Peer identity address.
e param: Client-defined parameter returned with callback event.

9.1.5 DmPrivClearResL.ist()

Clear resolving list. When complete the client's callback function is called with
DM_PRIV_CLEAR_RES_LIST_IND event. The client must wait to receive this event before executing this
function again.

Syntax:
void DmPrivClearResList(void)

9.1.6 DmPrivReadPeerResolvableAddr()

Read peer resolvable address. When complete the client's callback function is called with a
DM_PRIV_READ PEER_RES ADDR_IND event. The client must wait to receive this event before
executing this function again.

Syntax:

void DmPrivReadPeerResolvableAddr (uint8_t addrType, const uint8_t
*pIdentityAddr)

Where:

e addrTypePeer: ldentity address type.
e pldentityAddr: Peer identity address.

9.1.7 DmPrivReadLocalResolvableAddr ()

Read local resolvable address. When complete the client's callback function is called with a
DM_PRIV_READ LOCAL_RES _ADDR_IND event. The client must wait to receive this event
before executing this function again.

Syntax:

void DmPrivReadLocalResolvableAddr (uint8_t addrType, const uint8_t
*pIdentityAddr)

Where:

e addrTypePeer: ldentity address type.
e pIdentityAddr: Peer identity address.

Copyright © 2009-2016 ARM. All rights reserved Page 58

Confidential

Device Manager API

9.1.8 DmPrivSetAddrResEnable()

Enable or disable address resolution in LL. When complete the client's callback function is called with
a DM_PRIV_SET_ADDR_RES_ENABLE_IND event. The client must wait to receive this event before
executing this function again.

Syntax:
void DmPrivSetAddrResEnable(bool_t enable)
Where:

e enable: Setto TRUE to enable address resolution or FALSE to disable it.

9.1.9 DmPrivSetResolvablePrivateAddrTimeout ()
Set resolvable private address timeout.

Syntax:
void DmPrivSetResolvablePrivateAddrTimeout (uintl6_t rpaTimeout)

Where:

e rpaTimeout: Timeout measured in seconds.

9.2 Callback interface

9.21 DM_PRIV_RESOLVED_ADDR_IND: Private address resolved

Callback event for private address resolved. This event uses type wsfMsgHdr_t. If address resolution
is successful hdr.status is set to HCI_SUCCESS, otherwise it is set to HCI_ERR_AUTH_FAILURE.

Table 51 Private address resolved

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.status Status.

wsfMsgHdr_t hdr.param Client-defined parameter passed to
DmPrivResolveAddr().

9.22 DM_PRIV_ADD DEV_TO_RES LIST_IND: Device added to resolving list

Callback event for adding a device to the resolving list. This event uses type
hcilLeAddDevToResListCmdCmpTEvt_t.

Table 52 Device added to resolving list

Type Name Description
wsTMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.status Status.
Copyright © 2009-2016 ARM. All rights reserved Page 59

Confidential

Device Manager API

wsfMsgHdr_t hdr.param Client-defined parameter passed to
DmPrivAddDevToResList().

uint8_t status Command status

9.23 DM_PRIV_REM_DEV_FROM_RES _LIST_IND: Device removed from resolving list

Callback event for removing a device from the resolving list. This event uses type
hcilLeRemDevFromResListCmdCmpTEvt_t.

Table 53 Device removed from resolving list

Type Name Description

wsfMsgHdr_t hdr.event Callback event.

wsfMsgHdr_t hdr.status Status.

wsfMsgHdr_t hdr.param Client-defined parameter passed to

DmPrivRemDevToResList().

uint8_t status Command status

9.24 DM_PRIV_CLEAR _RES LIST_IND: Resolving list cleared
Callback event for clearing the resolving list. This event uses type hcilLeClearResListCmdCmplEvt_t.

Table 54 Resolving list cleared

Type Name Description
wsTMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.status Status.

9.25 DM_PRIV_READ PEER_RES ADDR_IND: Peer resolving address read

Callback event for returning the peer resolving address. This event uses type
hcilLeReadPeerResAddrCmdCmpTEvt_t.

Table 55 Read peer resolving address

Type Name Description
wsTMsgHdr_t hdr.event Callback event.
wsTMsgHdr_t hdr.status Status.

uint8_t peerRpa[BDA_ADDR_LEN] Peer resolving address.

9.26 DM_PRIV_READ LOCAL_RES ADDR_IND: Local resolving address read
Callback event for returning the local resolving address. This event uses type

Copyright © 2009-2016 ARM. All rights reserved Page 60

Confidential

Device Manager API

hcilLeReadLocalResAddrCmdCmplEvt_t.

Table 56 Read local resolving address

Type Name Description
wsfMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.status Status.

uint8_t TocalRpa[BDA_ADDR_LEN] Local resolving address.

9.2.7 DM_PRIV_SET_ADDR_RES_ENABLE_IND: Address resolving enable set

Callback event for enabling address resolution. This event uses type
hcilLeSetAddrResEnableCmdCmplEvt_t.

Table 57 Set address event

Type Name Description
wsfMsgHdr_t hdr.event Callback event.
wsfMsgHdr_t hdr.status Status.
Copyright © 2009-2016 ARM. All rights reserved Page 61

Confidential

Device Manager API

10Scenarios

10.1Advertising and scanning

Figure 1 shows a master device performing a scan and a slave device advertising. The slave
application first configures the advertising parameters by calling DmAdvSetInterval() to set the
advertising interval and then DmAdvSetData() twice to set the advertising data and the scan response
data. Then it calls DmAdvStart() to start advertising.

The master application configures the scan interval and then calls DmScanStart() to begin scanning.
When advertisements are received the stack sends DM_SCAN_REPORT_IND events to the application.
The master application stops scanning by calling bmScanStop (). The slave application stops
advertising by calling DmAdvStop Q).

Application Stack (Master) Stack (Slave) Application
DmAdvSetInterval()
DmScanSetInterval () <
> DmAdvSetData()
DmScanStart()
DmAdvSetData()
DM_SCAN_START_IND
DmAdvStart()
Scanning Started DM_ADV_START_IND
DM_SCAN_REPORT_IND Advertising Started
DM_SCAN_REPORT_IND
DmScanStop()
DM_SCAN_STOP_IND DmAdvStop)
DM_ADV_STOP_IND
Scanning Stopped >
Advertising Stopped
|

Figure 1. Advertising and scanning.

10.2Connection open and close

Figure 2 shows connection procedures between two devices. The scenario starts with the slave device
advertising and the master device already having the address of the slave. The master application calls
DmConnOpen () to initiate a connection. A connection is established and a DM_CONN_OPEN_IND is sent
to the application from the stack on each device.

Next, the master performs a connection update by calling DmConnUpdate (). When the connection
update is complete a DM_CONN_UPDATE_IND is sent to the application from the stack on each device.

Next, the slave closes the connection by calling bmConnClose(). A DM_CONN_CLOSE_IND event
is sent from the stack on each device when the connection is closed.

Copyright © 2009-2016 ARM. All rights reserved Page 62
Confidential

Device Manager API

Application Stack (Master) Stack (Slave) Application
l
Advertising Started
DmConnOpen()
Connection Established
DM_CONN_OPEN_IND DM_CONN_OPEN_IND
DmConnUpdate()
Connection Update
DM_CONN_UPDATE_IND DM_CONN_UPDATE_IND
DmConnClose()
Connection Closed
DM_CONN_CLOSE_IND DM_CONN_CLOSE_IND
Figure 2. Connection open and close.
10.3Pairing

Figure 3 shows a pairing procedure between two devices. A connection is established between the two
devices and the master application initiates pairing by calling DmSecPairReq(). The slave application
receives a DM_SEC_PAIR_IND and calls DmSecPairRsp() to proceed with pairing. In this example a
PIN is used and a DM_SEC_AUTH_REQ_IND is sent to the application on each device to request a PIN.
Each application responds with the PIN by calling DmSecAuthRsp().

In the next phase of pairing the connection is encrypted and a DM_SEC_ENCRYPT_IND event is sent to the
application on each device. Then key exchange begins. According to the Bluetooth specification, the
slave device always distributes keys first. In this example, the slave distributes two keys and the master
device distributes one. The slave sends its key data to the master. Note that when the slave sends its
LTK, the slave application receives a DM_SEC_KEY_IND containing its own LTK. Then the master
sends its key data to the slave. When the key exchange is completed successfully, a
DM_SEC_PAIR_CMPL_IND event is sent to the application on each device.

Copyright © 2009-2016 ARM. All rights reserved Page 63

Confidential

Application Stack (Master)

Device Manager API

Stack (Slave) Application
I

Connection Established

DmSecPairReq()

\ 4

Pairing Request

DM_SEC_PAIR_IND

DmSecPairRsp()

Pairing Response

DM_SEC_AUTH_REQ_IND
DmSecAuthRsp()

DM_SEC_AUTH_REQ_IND R
DmSecAuthRsp()

Connection Encrypted

DM_SEC_ENCRYPT_IND

<«

DM_SEC_ENCRYPT_IND

Begin Key Exchange

DM_SEC_KEY_IND

key data (LTK)

DM_SEC_KEY_IND

key data (IRK)

DM_SEC_KEY_IND

key data (IRK)

DM_SEC_KEY_IND

Key Exchange Complete

DM_SEC_PAIR_CMPL_IND

10.4Encryption

Figure 3. Pairing

DM_SEC_PAIR_CMPL_IND

Figure 4 shows an encryption procedure. In this example the slave device requests security by calling
DmSecSTaveReq() to sends a slave security request message to the master. The stack on the master
sends a DM_SEC_SLAVE_REQ_IND to the application. Upon receiving the event the master application
determines that this is a bonded device and its LTK is available, so it calls DmSecEncryptReq() to

enable encryption.

After the encryption procedure is initiated the slave application receives a DM_SEC_LTK_REQ_IND,
requesting the LTK used with this master device. The application finds the key and calls
DmSecLtkRsp(). The encryption procedure completes and a DM_SEC_ENCRYPT_IND event is sent to the

application on each device.

Copyright © 2009-2016 ARM. All rights reserved

Confidential

Page 64

Device Manager API

Application Stack (Master) Stack (Slave) Application
| |
Connection Established
DmSecSTaveReq()
Slave Security Request
DM_SEC_SLAVE_REQ_IND
DmSecEncryptReq()
Initiate Encryption
DM_SEC_LTK_REQ_IND
DmSecLtkRsp () g
Connection Encrypted
DM_SEC_ENCRYPT_IND DM_SEC_ENCRYPT_IND
Figure 4. Encryption
10.5Privacy

Figure 5 shows a master device performing a scan and a slave device advertising with a private
resolvable address. Before a master device can resolve a slave’s address the devices must have paired
and the master must have received the slave’s IRK during pairing.

The slave application first enables use of a private resolvable address by calling DmAdvPrivStart(). If
this is the first time since device reset that DmAdvPrivStart() has been called, the application must
wait for a DM_ADV_NEW_ADDR_IND before it starts advertising. Then it calls DmAdvStart() to start
advertising.

The master application calls DmScanStart () to begin scanning. When advertisements are received the
stack sends DM_SCAN_REPORT_IND events to the application. The master application calls
DmPrivResolveAddr () with the address and address type from the scan report to resolve the address
with the IRK it had received previously.

After the slave application stops advertising it can call DmAdvPrivStop() to stop using a private
resolvable address.

Copyright © 2009-2016 ARM. All rights reserved Page 65

Confidential

Device Manager API

Application Stack (Master) Stack (Slave) Application
l I

Devices Are Paired

DmAdvPrivStart()
DmScanStart() <
> DM_ADV_NEW_ADDR_IND
DM_SCAN_START_IND >
« ~ DmAdvStart()
Scanning Started DM_ADV_START_IND R

Advertising Started

DM_SCAN_REPORT_IND

DmPrivResolveAddr()

DM_PRIV_RESOLVED_ADDRJ IND

< DmAdvStop()
DM_ADV_STOP_IND
DmAdvPrivStop()

<
<

Advertising Stopped
|

Figure 5. Privacy

10.6 ECC key generation

An ECC Key must be stored in the Device Manager prior to use of LE Secure Connections pairing.

The Device Manager can generate an ECC, Elliptic Curve Cryptography, key, or the application can
store an ECC Key in Non-Volatile storage. An ECC key cannot be generated until after the Device

Manager reset is complete.

To generate an ECC Key, call the DmSecGenerateEccKeyReq() function after receiving the
DM_RESET_CMPL_IND event. The DM_SEC_ECC_KEY_IND event will be called after the ECC Key
generation is complete. The ECC Key can then be stored into the DM using the DmSecSetEccKey ()
function.

Note: For some applications, it may be desirable to skip ECC Key Generation and store an ECC key in
Non Volatile storage. In these situations, the ECC key can be written to the Device Manager with
DmSecSetEccKey any time after the DM is reset, and before pairing begins.

Note: The Device Manager makes use of the WSF ECC subsystem to generate and validate ECC keys.
The WSF ECC subsystem may need to be ported to an application’s target hardware or software
framework for LE Secure Connections to operate properly.

The following figure shows the ECC Key generation scenario:

Copyright © 2009-2016 ARM. All rights reserved Page 66

Confidential

Device Manager API

Application Stack

DM_RESET_CMPL_IND

DmSecGenerateEccKeyReq (l

DM_SCAN_START_IND

ECC Key Generated

DM_SEC_ECC_KEY_IND

DmSecSetEccKey ()

Figure 6: ECC key generation

10.7Out of Band confirm calculation

When using Out-of-Band (OOB) LE Secure Connections pairing, devices must generate random and
confirm values. Furthermore, the devices must exchange random and confirm values through an out-
of-band mechanism. At which point, the local and peer random and confirm values must be stored in
the Device Manager prior to OOB pairing.

The OOB confirm calculation can be performed with DmSecCalcOobReq(), and requires an ECC,
Elliptic Curve Cryptography, key. Therefore, on receipt of the ECC key indication event,
DM_SEC_ECC_KEY_IND, an application may call the DmSecCalcOobReq() function to calculate an OOB
confirm value. The result of the confirm calculation will be returned via the DM_SEC_CALC_OOB_IND
event.

After an application exchanges random and confirm values via an out-of-band mechanism with a peer,
the application must store the local random and confirm values in the device manager. This can be
performed with the DmSecSetOob () function. This must happen prior to initiating LE Secure
Connections OOB Pairing.

The following figure shows the OOB confirm calculation scenario:

Copyright © 2009-2016 ARM. All rights reserved Page 67

Confidential

Device Manager API

Application Stack

DM_SEC_ECC_KEY_IND

DmSecCalcOobReq ()
DM_SEC_CALC_OOB_IND

OOB Exchange

DM_CONN_OPEN_IND

DmSecSetOob ()

Figure 7: OOB confirm generation

Copyright © 2009-2016 ARM. All rights reserved Page 68

Confidential

