
Copyright 2009-2016 ARM. All rights reserved. Page 1

Confidential

ARM® Cordio Stack

ARM-EPM-115879 1.0

L2CAP API

Confidential

Copyright 2009-2016 ARM. All rights reserved. Page 2

Confidential

ARM® Cordio Stack L2CAP API

Reference Manual
Copyright © 2009-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change

25 September 2015
-

Confidential
First Wicentric release for 1.3 as 2009-

0007.

1 March 2016 A Confidential First ARM release for 1.3.

24 August 2016 A Confidential AUSPEX # / API Update

Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the information contained in this

document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any

form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to

any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the

information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology

or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or

creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for

publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this

document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

IMPORTANT. Your use of this document is governed by a Software License Agreement ("Agreement") that must be accepted in order to

download or otherwise receive a copy of this document. You may not use or copy this document for any purpose other than as described

in the Agreement. If you do not agree to all of the terms of the Agreement do not use this document and delete all copies in your

possession or control; if you do not have a copy of the Agreement, you must contact ARM, Ltd. prior to any use, copying or further

distribution of this document.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,

SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE

DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or

understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,

HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS

DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this

document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,

directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to

create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without

notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this

document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This

document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version

of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or

elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.

Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright 2009-2016 ARM. All rights reserved. Page 3

Confidential

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2009-2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status
This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with

the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

L2CAP API

Copyright 2009-2016 ARM. All rights reserved. Page 4

Confidential

Contents

ARM® Cordio Stack 1

L2CAP API Error! Bookmark not defined.

1 Preface 5

1.1 About this book 5

1.1.1 Intended audience 5

1.1.2 Using this book 5

1.1.3 Terms and abbreviations 5

1.1.4 Conventions 7

1.1.5 Additional reading 7

1.2 Feedback 8

1.2.1 Feedback on content 8

2 Introduction 9

3 System Context 10

4 Subsystem Architecture 11

4.1 l2c_api 11

4.1.1 Constants and data structures 11

4.1.2 Function calls 12

4.1.3 Callback functions 16

5 Scenarios 18

5.1 Initialization 18

5.2 Data path 18

5.3 Connection parameter update 19

A. Revisions Error! Bookmark not defined.

1 Preface

This preface introduces the Cordio Stack L2CAP API.

1.1 About this book

This document describes the Cordio Stack L2CAP and describes how to use the software.

1.1.1 Intended audience

This book is written for experienced software engineers who might or might not have experience

with ARM products. Such engineers typically have experience of writing Bluetooth applications

but might have limited experience of the Cordio software stack.

It is also assumed that the readers have access to all necessary tools.

1.1.2 Using this book

This book is organized into the following chapters:

 Introduction

Read this for an overview of the L2 API.

 System Context

Read this for a description of the L2C subsystem in the Bluetooth LE stack.

 System Architecture

Read this for a description of the modules and functions in the L2C subsystem.

 Scenarios

Read this for an overview of how APIs are used in different scenarios.

 Revisions

Read this chapter for descriptions of the changes between document versions.

1.1.3 Terms and abbreviations

For a list of ARM terms, see the ARM glossary.

Terms specific to the Cordio software are listed below:

Term Description

ACL Asynchronous Connectionless data packet

AD Advertising Data

ARQ Automatic Repeat reQuest

ATT Attribute Protocol, also attribute protocol software subsystem

ATTC Attribute Protocol Client software subsystem

ATTS Attribute Protocol Server software subsystem

CCC or CCCD Client Characteristic Configuration Descriptor

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 6

Confidential

CID Connection Identifier

CSRK Connection Signature Resolving Key

DM Device Manager software subsystem

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JIT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

OOB Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem

SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 7

Confidential

1.1.4 Conventions

The following table describes the typographical conventions:

Typographical conventions

Style Purpose

Italic Introduces special terminology, denotes cross-references, and

citations.

bold Highlights interface elements, such as menu names. Denotes

signal names. Also used for terms in descriptive lists, where

appropriate.

MONOSPACE Denotes text that you can enter at the keyboard, such as

commands, file and program names, and source code.

MONOSPACE Denotes a permitted abbreviation for a command or option. You

can enter the underlined text instead of the full command or option

name.

monospace italic Denotes arguments to monospace text where the argument is to be

replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they

appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical

meanings, that are defined in the ARM
®

 Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,

and UNPREDICTABLE.

1.1.5 Additional reading

This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

 Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

http://infocenter.arm.com/

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 8

Confidential

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

1.2.1 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

 The title.

 The number, ARM-EPM-115148.

 The page numbers to which your comments apply.

 A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the

quality of the represented document when used with any other PDF reader.

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 9

Confidential

2 Introduction

This document describes the API and software design of the L2CAP subsystem, L2C.

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 10

Confidential

3 System Context

Figure 1 shows the context of the L2C subsystem in the Bluetooth LE stack.

Figure 1: Bluetooth LE stack software system.

L2C interfaces to HCI to send and receive ACL packets. The ATT and SMP protocol layers

interface to L2C to send and receive L2CAP packets. L2C also interfaces to DM to perform the

L2CAP connection update procedure.

WSF

ATT SMP

L2C

HCI

DM

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 11

Confidential

4 Subsystem Architecture

Figure 2 shows the different modules that make up the L2C subsystem.

Figure 2: Subsystem architecture

Module l2c_api contains the API. Module l2c_main contains the main API function

implementation, main event handler, and functions for processing packets. Module l2c_master

contains API functions and other functions used only when operating as an LE master. Module

l2c_slave contains API functions and other functions used only when operating as an LE slave.

Module lcc_coc contains functions for L2CAP Connection Oriented Channels.

4.1 l2c_api

4.1.1 Constants and data structures

Table 1: Connection identifiers

Name Value Description

L2C_CID_ATT 0x0004 CID for attribute protocol.

L2C_CID_LE_SIGNALING 0x0005 CID for LE signaling.

L2C_CID_SMP 0x0006 CID for security manager protocol.

Table 2: Connection parameter result

Name Value Description

L2C_CONN_PARAM_ACCEPTED 0x0000 Connection parameters accepted.

L2C_CONN_PARAM_REJECTED 0x0001 Connection parameters rejected.

l2c_api

l2c_main

l2c_master l2c_slave l2c_coc

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 12

Confidential

Table 3: Control callback events

Name Value Description

L2C_CTRL_FLOW_ENABLE_IND 0x00 Data flow enabled. The client may call
L2cDataReq().

L2C_CTRL_FLOW_DISABLE_IND 0x01 Data flow disabled. The client should not call

L2cDataReq() until it receives a

L2C_CTRL_FLOW_ENABLE_IND.

4.1.2 Function calls

4.1.2.1 L2cInit()

This function is called to initialize L2C. This function is generally called once during system

initialization before any other non-initialization L2C API functions are called. .

Syntax:

void L2cInit (void)

4.1.2.2 L2cMasterInit()

This function is called to initialize L2C for operation as a Bluetooth LE master. This function is

generally called once during system initialization before any other non-initialization L2C API

functions are called.

Syntax:

void L2cMasterInit(void)

4.1.2.3 void L2cSlaveInit(void)

This function is called to initialize L2C for operation as a Bluetooth LE slave. This function is

generally called once during system initialization before any other non-initialization L2C API

functions are called.

Syntax:

void L2cSlaveInit(void)

4.1.2.4 L2cRegister()

This function is called by the L2C client, such as ATT or SMP, to register for the given CID.

This allows the client to send and receive data using that CID.

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 13

Confidential

Syntax:

void L2cRegister(uint16_t cid, l2cDataCback_t dataCback, l2cCtrlCback_t

ctrlCback)

Where:

 dataCback: Callback function for L2CAP data received for this CID. This cannot be set

to NULL.

 ctrlCback: Callback function for control events for this CID. This cannot be set to

NULL.

This function stores the callback parameters in l2cMain.

4.1.2.5 L2cDataReq()

This function sends an L2CAP data packet on the given CID.

Syntax:

void L2cDataReq(uint16_t cid, uint16_t handle, uint16_t len, uint8_t

*pL2cPacket)

Where:

 cid: The channel identifier.

 handle: The connection handle. The client receives this handle from DM when the

connection is established.

 len: The length of the payload data in pPacket.

 pL2cPacket: A buffer containing the packet. This is a WSF buffer allocated by the

client.

The buffer pointed to by pL2cPacket must be a WSF buffer allocated by the client.

This function first checks if there is an active connection associated with the handle. If not, the

packet is discarded and the buffer containing the packet is deallocated. Then it builds an L2CAP

data packet, setting both the L2CAP and HCI headers. Then it calls function HciSendAclData()

to send the packet to HCI.

4.1.2.6 L2cDmConnUpdateReq()

This function is called by DM to send an L2CAP connection update request.

Syntax:

void L2cDmConnUpdateReq(uint16_t handle, hciConnSpec_t *pConnSpec)

Where:

 handle: The connection handle.

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 14

Confidential

 pConnSpec: Pointer to the connection specification structure. This structure is defined in

the HCI API Reference Manual. The following elements in the structure must be set:

o connIntervalMin

o connIntervalMax

o connLatency

o supTimeout

This function starts the signaling request timeout timer, builds an L2CAP connection update

request packet and then calls L2cDataReq() to send the packet.

4.1.2.7 L2cDmConnUpdateRsp()

This function is called by DM to send an L2CAP connection update response.

Syntax:

void L2cDmConnUpdateRsp(uint8 identifier, uint16_t handle, uint16_t result)

Where:

 identifier: Identifier value previously passed from L2C to DM.

 handle: The connection handle.

 result: Connection update response result. See 0.

This function builds an L2CAP connection update response packet and then calls L2cDataReq()

to send the packet.

4.1.2.8 L2cSlaveHandler()

This function is the WSF event handler for L2C when operating as a slave. This function is only

called from the WSF OS implementation.

Syntax:

L2cSlaveHandler(wsfEventMask_t event, wsfMsgHdr_t *pMsg)

Where:

 event: Event mask.

 pMsg: Pointer to message.

The implementation of this function handles the L2CAP signaling request timeout timer.

4.1.2.9 L2cSlaveHandlerInit(wsfHandlerId_t handlerId)

This is the event handler initialization function for L2C when operating as a slave. This function

is generally called once during system initialization.

Syntax:

L2cSlaveHandlerInit(wsfHandlerId_t handlerId)

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 15

Confidential

Where:

 handlerId: ID for this event handler.

 This function stores the hander ID and performs other initialization procedures.

4.1.2.10 L2cCocInit()

This function initializes the L2Cap Connection Oriented Channels. This function is generally

called once during initialization.

Syntax:

L2cCocInit(void)

4.1.2.11 L2cCocRegister()

This function is used to register an instance of a connection oriented channel. The instance can

be a channel acceptor, initiator, or both. If registering as channel as acceptor, then the PSM is

specified. After registering a connection, the connections can be established by the client using

this registration instance.

Syntax:

l2cCocRegId_t L2cCocRegister(l2cCocCback_t cback, l2cCocReg_t *pReg)

Where:

 cback: Callback for the connection oriented channel.

 pReg: Registration parameters.

This function returns an identifier for the channel.

4.1.2.12 L2cCocDeregister()

This function deregisters and deallocates a connection oriented channel registered instance. This

function should only be called if there are no active channels using the registration instance.

Syntax:

L2cCocDeregister(l2cCocRegId_t regId)

Where:

 regId: The identifier for the channel (returned by L2cCocRegister).

4.1.2.13 L2cCocConnectReq()

This function initiates a connection to the given peer PSM using the connection oriented channel

subsystem.

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 16

Confidential

Syntax:

uint16_t L2cCocConnectReq(dmConnId_t connId, l2cCocRegId_t regId, uint16_t

psm)

Where:

 connId: The DM connection ID.

 regId: The identifier for the channel (returned by L2cCocRegister).

 psm: The peers PSM.

This function returns the local CID or L2C_COC_CID_NONE if there was a failure.

4.1.2.14 L2cCocDisconnectReq()

This function disconnects the channel to the peer for the given CID.

Syntax:

L2cCocDisconnectReq(uint16_t cid)

Where:

 cid: The channel CID (returned by L2cCocConnectReq).

4.1.2.15 L2cCocDataReq()

This function sends an L2CAP data packet on the given connection oriented channel with the

given CID.

Syntax:

L2cCocDataReq(uint16_t cid, uint16_t len, uint8_t *pPayload)

Where:

 cid: The channel CID (returned by L2cCocConnectReq).

 len: The length of the pPayload in bytes.

 pPayload: The packet to send.

4.1.3 Callback functions

4.1.3.1 (*l2cDataCback_t)()

This callback function sends a received L2CAP packet to the client.

Syntax:

void (*l2cDataCback_t)(uint16_t handle, uint16_t len, uint8_t *pPacket)

Where:

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 17

Confidential

 handle: The connection handle.

 len: The length of the L2CAP payload data in pPacket.

 pPacket: A buffer containing the packet.

4.1.3.2 (*l2cCtrlCback_t)()

This callback function sends control events to the client. It is currently used only for flow

control.

Syntax:

void (*l2cCtrlCback_t)(uint8_t event)

Where:

 event: Control event. See 0

4.1.3.3 (*l2cCocCback_t)()

This callback function sends data and other events to connection oriented channel clients.

Syntax:

void (*l2cCocCback_t)(l2cCocEvt_t *pMsg)

Where:

 pMsg: Pointer to the message structure

4.1.3.4 (*l2cCocAuthorCback_t)()

This callback function is used for authorization of connection oriented channels.

Syntax:

uint16_t (*l2cCocAuthorCback_t)(dmConnId_t connId, l2cCocRegId_t regId,

uint16_t psm)

Where:

 connId: The connection identifier.

 regId: The connection oriented channel registration instance identifier.

 psm: The psm of the connection.

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 18

Confidential

5 Scenarios

This section describes example scenarios for initialization and connection.

5.1 Initialization

Figure 3 shows the initialization process. In this example, the system supports operation as both

a master and a slave so L2cMasterInit() and L2cSlaveInit() are called. Then function

L2cSlaveHandlerInit() is called after L2cSlaveHandler() is set up in the WSF OS

implementation.

Figure 3: Initialization

5.2 Data path

Figure 4 shows the operation of the data path with ATT shown as an example L2C client. ATT

calls L2cDataReq() to send a packet to L2C. Then L2C calls HciSendAclData() to send the

packet to HCI. In the receive direction, HCI calls HciAclDataCback() to send a packet to L2C.

L2C calls ATT callback function attDataCback() to send the packet to ATT.

System Init L2C

L2cMasterInit()

L2cSlaveInit()

Set up L2cSlaveHandler()

in WSF OS

L2cSlaveHandlerInit(handlerId)

L2CAP API

Copyright  2009-2016 ARM. All rights reserved. Page 19

Confidential

Figure 4: Data path

5.3 Connection parameter update

Figure 5 shows a connection parameter update procedure with the stack operating as a slave.

DM calls L2cDmConnUpdateReq() to initiate the process. L2C builds and sends an L2CAP

Connection Parameter Update Request. The peer device receives the request and initiates a

connection update procedure. When the procedure completes an HCI LE Connection Update

Complete Event is sent from HCI to DM. Then the L2CAP Connection Parameter Update

Response is received from the peer and L2C calls DmL2cConnUpdateCnf().

Figure 5: Connection parameter update

L2C HCI

HciSendAclData(pPacket)

HciAclDataCback(pPacket)

ATT

L2cDataReq(cid, handle, len,

pPacket)

attDataCback(handle, len, pPacket)

L2C HCI

HciSendAclData(pPacket

)

HCI LE Connection Update

Complete Event

DM

L2cDmConnUpdateReq

(handle, pConnSpec)

HciAclDataCback(pPacket)

L2C

L2cDataReq(cid, handle,

len, pPacket)

l2cSlaveRxSignalingPacket

(handle, pPacket)

DmL2cConnUpdateCnf

(handle, result)

