ARM® Cordio Stack

ARM-EPM-115879 1.0

L2CAP API

Confidential

ARM

Copyright ©2009-2016 ARM. All rights reserved. Page 1

Confidential

ARM® Cordio Stack L2CAP API

Reference Manual
Copyright © 2009-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change

25 September 2015 - Confidential gérgt?Wwentrlc release for 1.3 as 2009-
1 March 2016 A Confidential First ARM release for 1.3.

24 August 2016 A Confidential AUSPEX # / APl Update

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any
form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to
any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the
information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology
or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or
creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for
publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this
document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

IMPORTANT. Your use of this document is governed by a Software License Agreement ("Agreement") that must be accepted in order to
download or otherwise receive a copy of this document. You may not use or copy this document for any purpose other than as described
in the Agreement. If you do not agree to all of the terms of the Agreement do not use this document and delete all copies in your
possession or control; if you do not have a copy of the Agreement, you must contact ARM, Ltd. prior to any use, copying or further
distribution of this document.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or
understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to
create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without
notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version
of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.
Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright ©2009-2016 ARM. All rights reserved. Page 2

Confidential

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.
Copyright © 2009-2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status

This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with
the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address
http://www.arm.com

Copyright ©2009-2016 ARM. All rights reserved. Page 3

Confidential

Contents

ARM® Cordio Stack
L2CAP API

1 Preface

1.1 About this book
1.1.1Intended audience
1.1.2 Using this book
1.1.3Terms and abbreviations
1.1.4Conventions
1.1.5 Additional reading

1.2 Feedback

1.2.1 Feedback on content
2 Introduction
3 System Context

4 Subsystem Architecture
4.1 12c_api
4.1.1 Constants and data structures
4.1.2 Function calls

4.1.3 Callback functions

5 Scenarios
5.1 Initialization
5.2 Data path

5.3 Connection parameter update

A. Revisions

Copyright ©2009-2016 ARM. All rights reserved.

Confidential

L2CAP API

Error! Bookmark not defined.

10

11
11
11
12

16

18
18
18

19

Error! Bookmark not defined.

Page 4

1 Preface
This preface introduces the Cordio Stack L2CAP API.

1.1 About this book
This document describes the Cordio Stack L2CAP and describes how to use the software.

1.1.1 Intended audience

This book is written for experienced software engineers who might or might not have experience
with ARM products. Such engineers typically have experience of writing Bluetooth applications
but might have limited experience of the Cordio software stack.

It is also assumed that the readers have access to all necessary tools.

1.1.2 Using this book
This book is organized into the following chapters:

e Introduction
Read this for an overview of the L2 API.

e System Context
Read this for a description of the L2C subsystem in the Bluetooth LE stack.

e System Architecture
Read this for a description of the modules and functions in the L2C subsystem.

e Scenarios
Read this for an overview of how APIs are used in different scenarios.

e Revisions
Read this chapter for descriptions of the changes between document versions.

1.1.3 Terms and abbreviations
For a list of ARM terms, see the ARM glossary.

Terms specific to the Cordio software are listed below:

Term Description

ACL Asynchronous Connectionless data packet

AD Advertising Data

ARQ Automatic Repeat reQuest

ATT Attribute Protocol, also attribute protocol software subsystem
ATTC Attribute Protocol Client software subsystem

ATTS Attribute Protocol Server software subsystem

CCCorCCCD Client Characteristic Configuration Descriptor

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

L2CAP API

CID Connection ldentifier

CSRK Connection Signature Resolving Key

DM Device Manager software subsystem

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

0o0oB Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem
SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.
Copyright © 2009-2016 ARM. All rights reserved. Page 6

Confidential

1.1.4 Conventions

L2CAP API

The following table describes the typographical conventions:

Style

Italic

bold

MONOSPACE

MONOSPACE

monospace italic

monospace bold

<and>

SMALL CAPITALS

1.1.5 Additional reading

Typographical conventions
Purpose

Introduces special terminology, denotes cross-references, and
citations.

Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

Denotes language keywords when used outside example code.

Encloses replaceable terms for assembler syntax where they
appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Used in body text for a few terms that have specific technical
meanings, that are defined in the ARM® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,
and UNPREDICTABLE.

This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

e Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

Copyright © 2009-2016 ARM. All rights reserved. Page 7

Confidential

http://infocenter.arm.com/

L2CAP API

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

1.2.1 Feedback on content
If you have comments on content then send an e-mail to errata@arm. com. Give:

The title.

The number, ARM-EPM-115148.

The page numbers to which your comments apply.
A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.

Copyright © 2009-2016 ARM. All rights reserved. Page 8

Confidential

L2CAP API

2 Introduction
This document describes the API and software design of the L2CAP subsystem, L2C.

Copyright © 2009-2016 ARM. All rights reserved. Page 9

Confidential

L2CAP API

3 System Context

Figure 1 shows the context of the L2C subsystem in the Bluetooth LE stack.

DM
L2C
HCI

Figure 1: Bluetooth LE stack software system.

L2C interfaces to HCI to send and receive ACL packets. The ATT and SMP protocol layers
interface to L2C to send and receive L2CAP packets. L2C also interfaces to DM to perform the
L2CAP connection update procedure.

Copyright © 2009-2016 ARM. All rights reserved. Page 10

Confidential

L2CAP API

4 Subsystem Architecture

Figure 2 shows the different modules that make up the L2C subsystem.

I2c_master

I2c_main

I2c_slave

I2¢c_api

I2c_coc

Figure 2: Subsystem architecture

Module 12c_api contains the APl. Module 12c_main contains the main API function
implementation, main event handler, and functions for processing packets. Module I12c_master
contains API functions and other functions used only when operating as an LE master. Module
I2c_slave contains API functions and other functions used only when operating as an LE slave.
Module lcc_coc contains functions for L2ZCAP Connection Oriented Channels.

4.1 12c_api

4.1.1 Constants and data structures

Table 1: Connection identifiers

Name Value Description
L2C_CID_ATT 0x0004 CID for attribute protocol.
L2C_CID_LE_SIGNALING 0x0005 CID for LE signaling.
L2C_CID_SMP 0x0006 CID for security manager protocol.
Table 2: Connection parameter result
Name Value Description
L2C_CONN_PARAM_ACCEPTED ~ 0x0000 Connection parameters accepted.
L2C_CONN_PARAM_REJECTED 0x0001 Connection parameters rejected.

Copyright © 2009-2016 ARM. All rights reserved.

Page 11

Confidential

L2CAP API

Table 3: Control callback events

Name Value Description
L2C_CTRL_FLOW_ENABLE_IND 0x00 Data flow enabled. The client may call
L2cDataReq().

L2C_CTRL_FLOW_DISABLE_IND 0x01 Data flow disabled. The client should not call
L2cDataReq() until it receives a
L2C_CTRL_FLOW_ENABLE_IND.

4.1.2 Function calls
4.1.2.1 L2clnit()

This function is called to initialize L2C. This function is generally called once during system
initialization before any other non-initialization L2C API functions are called. .

Syntax:

void L2cInit (void)

4.1.2.2 L2cMasterlnit()

This function is called to initialize L2C for operation as a Bluetooth LE master. This function is
generally called once during system initialization before any other non-initialization L2C API
functions are called.

Syntax:
void L2cMasterInit(void)
4.1.2.3 void L2cSlavelnit(void)

This function is called to initialize L2C for operation as a Bluetooth LE slave. This function is
generally called once during system initialization before any other non-initialization L2C API
functions are called.

Syntax:
void L2cSlaveInit(void)
4.1.2.4 L2cRegister()

This function is called by the L2C client, such as ATT or SMP, to register for the given CID.
This allows the client to send and receive data using that CID.

Copyright © 2009-2016 ARM. All rights reserved. Page 12

Confidential

L2CAP API

Syntax:

void L2cRegister(uintl6_t cid, 12cDataCback_t dataCback, 12cCtriCback_t
ctrlCback)

Where:

e dataCback: Callback function for L2CAP data received for this CID. This cannot be set
to NULL.

e ctrlChack: Callback function for control events for this CID. This cannot be set to
NULL.

This function stores the callback parameters in 12cMain.
4.1.2.5 L2cDataReq()

This function sends an L2CAP data packet on the given CID.
Syntax:

void L2cDataReq(uintl6_t cid, uintl6_t handle, uintl6_t len, uint8_t
*pL2cPacket)

Where:

e cid: The channel identifier.

e handle: The connection handle. The client receives this handle from DM when the
connection is established.

e Ten: The length of the payload data in pPacket.

e plL2cPacket: A buffer containing the packet. This is a WSF buffer allocated by the
client.

The buffer pointed to by pL2cPacket must be a WSF buffer allocated by the client.

This function first checks if there is an active connection associated with the handle. If not, the
packet is discarded and the buffer containing the packet is deallocated. Then it builds an L2CAP
data packet, setting both the L2ZCAP and HCI headers. Then it calls function HciSendAclData()
to send the packet to HCI.

4.1.2.6 L2cDmConnUpdateReq()
This function is called by DM to send an L2CAP connection update request.
Syntax:
void L2cDmConnUpdateReq(uintl6_t handle, hciConnSpec_t *pConnSpec)

Where:

e handle: The connection handle.

Copyright © 2009-2016 ARM. All rights reserved. Page 13

Confidential

L2CAP API

e pConnSpec: Pointer to the connection specification structure. This structure is defined in
the HCI API Reference Manual. The following elements in the structure must be set:
o connlintervalMin
o connintervalMax
o connLatency
o supTimeout

This function starts the signaling request timeout timer, builds an L2ZCAP connection update
request packet and then calls L2cDataReq() to send the packet.

4.1.2.7 L2cDmConnUpdateRsp()
This function is called by DM to send an L2CAP connection update response.
Syntax:
void L2cDmConnUpdateRsp(uint8 identifier, uintl6_t handle, uintl6_t result)

Where:

e identifier: Identifier value previously passed from L2C to DM.
e handle: The connection handle.
e result: Connection update response result. See 0.

This function builds an L2CAP connection update response packet and then calls L2cDataReq()
to send the packet.

4.1.2.8 L2cSlaveHandler()

This function is the WSF event handler for L2C when operating as a slave. This function is only
called from the WSF OS implementation.

Syntax:
L2cSTaveHandler(wsfEventMask_t event, wsfMsgHdr_t *pMsg)

Where:

e event: Event mask.
e pMsg: Pointer to message.

The implementation of this function handles the L2CAP signaling request timeout timer.
4.1.2.9 L2cSlaveHandlerInit(wsfHandlerld_t handlerid)

This is the event handler initialization function for L2C when operating as a slave. This function
is generally called once during system initialization.

Syntax:

L2cSTaveHandlerInit(wsfHandlerId_t handlerId)

Copyright © 2009-2016 ARM. All rights reserved. Page 14

Confidential

L2CAP API

Where:

e handlerId: ID for this event handler.
This function stores the hander ID and performs other initialization procedures.

4.1.2.10 L2cCoclnit()

This function initializes the L2Cap Connection Oriented Channels. This function is generally
called once during initialization.

Syntax:
L2cCocInit(void)
4.1.2.11 L2cCocRegister()

This function is used to register an instance of a connection oriented channel. The instance can
be a channel acceptor, initiator, or both. If registering as channel as acceptor, then the PSM is
specified. After registering a connection, the connections can be established by the client using
this registration instance.

Syntax:
T12cCocRegId_t L2cCocRegister(12cCocCback_t chback, 12cCocReg_t *pReg)

Where:

e chack: Callback for the connection oriented channel.
e pReg: Registration parameters.

This function returns an identifier for the channel.
4.1.2.12 L2cCocDeregister()

This function deregisters and deallocates a connection oriented channel registered instance. This
function should only be called if there are no active channels using the registration instance.

Syntax:

L2cCocDeregister(12cCocRegIld_t regId)
Where:

e regId: The identifier for the channel (returned by L2cCocRegister).
4.1.2.13 L2cCocConnectReq()

This function initiates a connection to the given peer PSM using the connection oriented channel
subsystem.

Copyright © 2009-2016 ARM. All rights reserved. Page 15

Confidential

L2CAP API

Syntax:

uintlée_t L2cCocConnectReq(dmConnId_t connlId, 12cCocRegId_t regId, uintl6_t
psm)

Where:

e connId: The DM connection ID.
e regId: The identifier for the channel (returned by L2cCocRegister).
e psm: The peers PSM.

This function returns the local CID or L2C_COC_CID_NONE if there was a failure.
4.1.2.14 L2cCocDisconnectReq()
This function disconnects the channel to the peer for the given CID.
Syntax:
L2cCocDisconnectReq(uintl6_t cid)
Where:
e cid: The channel CID (returned by L2cCocConnectReq).
4.1.2.15 L2cCocDataReq()

This function sends an L2CAP data packet on the given connection oriented channel with the
given CID.

Syntax:
L2cCocDataReq(uintl6e_t cid, uintl6é_t len, uint8_t *pPayload)

Where:

e cid: The channel CID (returned by L2cCocConnectReq).
e Ten: The length of the pPayload in bytes.
e pPayload: The packet to send.

4.1.3 Callback functions
4.1.3.1 (*12cDataCback_t)()

This callback function sends a received L2CAP packet to the client.
Syntax:

void (*12cDataCback_t) (uintl6e_t handle, uintl6_t Ten, uint8_t *pPacket)
Where:

Copyright © 2009-2016 ARM. All rights reserved. Page 16

Confidential

L2CAP API

e handle: The connection handle.
e len: The length of the L2CAP payload data in pPacket.
e pPacket: A buffer containing the packet.

4.1.3.2 (*12cCtriCback_t)()

This callback function sends control events to the client. It is currently used only for flow
control.

Syntax:
void (*12cCtrlCback_t) (uint8_t event)
Where:
e event: Control event. See 0
4.1.3.3 (*12cCocCback_t)()
This callback function sends data and other events to connection oriented channel clients.
Syntax:
void (*12cCocCback_t) (12cCocEvt_t *pMsg)
Where:
e pMsg: Pointer to the message structure
4.1.3.4 (*12cCocAuthorCback_t)()
This callback function is used for authorization of connection oriented channels.
Syntax:

uintlée_t (*12cCocAuthorCback_t) (dmConnId_t connId, 12cCocRegIld_t regId,
uintl6e_t psm)

Where:

e connId: The connection identifier.
e regId: The connection oriented channel registration instance identifier.
e psm: The psm of the connection.

Copyright © 2009-2016 ARM. All rights reserved. Page 17

Confidential

L2CAP API

5 Scenarios

This section describes example scenarios for initialization and connection.

5.1 Initialization

Figure 3 shows the initialization process. In this example, the system supports operation as both
a master and a slave so L2cMasterInit() and L2cSTaveInit() are called. Then function
L2cSTaveHandlerInit() is called after L2cSTaveHand1er () is set up in the WSF OS
implementation.

System Init L2C

L2cMasterInit()

L2cSTaveInit()

Set up L2cSlaveHandler()
in WSF OS

L2cSTaveHandlerInit(handlerId)

Figure 3: Initialization

5.2 Data path

Figure 4 shows the operation of the data path with ATT shown as an example L2C client. ATT
calls L2cDataReq() to send a packet to L2C. Then L2C calls HciSendAc1Data() to send the
packet to HCI. In the receive direction, HCI calls HciAc1DataCback () to send a packet to L2C.
L2C calls ATT callback function attDataCback() to send the packet to ATT.

Copyright © 2009-2016 ARM. All rights reserved. Page 18

Confidential

ATT

L2cDataReq(cid, handle, Ten,
pPacket)

L2C

attDataCback(handle,

HciSendAc1Data(pPacket)

L2CAP API

HCI

HciAclDataCback(pPacket)

len, pPacket)

Figure 4: Data path

5.3 Connection parameter update

Figure 5 shows a connection parameter update procedure with the stack operating as a slave.
DM calls L2cDmConnUpdateReq() to initiate the process. L2C builds and sends an L2CAP
Connection Parameter Update Request. The peer device receives the request and initiates a
connection update procedure. When the procedure completes an HCI LE Connection Update
Complete Event is sent from HCI to DM. Then the L2ZCAP Connection Parameter Update
Response is received from the peer and L2C calls DmL2cConnUpdateCnf ().

DM L2C

L2cDmConnUpdateReq
(handle, pConnSpec)

L2cDataReq(cid, handle,
len, pPacket)

L2C

HciSendAc1Data(pPacket
)

HCI LE Connection Update
Complete Event

DmL2cConnUpdateCnf
(handle, result)

HciAclDataCback(pPacket)

12cST1aveRxSignalingPacket
(handle, pPacket)

Figure 5: Connection parameter update

Copyright © 2009-2016 ARM. All rights reserved.

Confidential

HCI

Page 19

