ARM® Cordio Stack

ARM-EPM-115876 1.0

Attribute Protocol API

Confidential

ARM

Copyright © 2009-2016 ARM. All rights reserved. Page

Confidential

Attribute Protocol API

ARM® Cordio Attribute Protocol API

Reference Manual
Copyright © 2009-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change
- . . First Wicentric release for 1.5 as
25 September 2015 Confidential document 2009-0010
1 March 2016 A Confidential First ARM release for 1.5
24 August 2016 A Confidential AUSPEX # / APl Update

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any
form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to
any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the
information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology
or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or
creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for
publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this
document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or
understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to
create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without
notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version
of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.
Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2009-2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

Copyright © 2009-2016 ARM. All rights reserved. Page 2

Confidential

Attribute Protocol API

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status

This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with
the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address
http://www.arm.com

Copyright © 2009-2016 ARM. All rights reserved. Page 3

Confidential

Contents

ARM® Cordio Stack

1

4

Preface

1.1 About this book

1.2

1.1.1Intended audience

1.1.2 Using this book
1.1.3Terms and abbreviations
1.1.4 Conventions

1.1.5 Additional reading
Feedback

1.2.1 Feedback on content

Introduction

Main Interface

3.1

3.2

3.3

Constants and data types
3.1.1 Status

3.1.2 Operation
3.1.3attCfg_t
Functions

3.2.1 AttRegister()
3.2.2 AttConnRegister()
3.2.3 AttGetMtu()
Callback interface
3.3.1 (*attCback_t)()
3.3.2 Callback events

3.3.3attEvt_t

Server Interface

Copyright © 2009-2016 ARM. All rights reserved.

Confidential

Attribute Protocol API

Page 4

c© o ©0 O o

10
10
11

11

12

13
13
13
14
15
15
15
16
16
16
16
16

17

18

5

4.1

4.2

4.3

4.4

Server Client Characteristic Configuration Interface

Attribute server operation
Constants and data types
4.2.1 Attribute settings

4.2.2 Attribute security settings
4.2.3 Attribute UUID

4.2.4 Attribute value

4.2.5 Attribute handles

4.2 .6 attsAttr_t

4.2.7 attsGroup_t

Functions

4.3.1 Attslnit()

4.3.2 Attsindlnit()

4.3.3 AttsSigninit()

4.3.4 AttsAuthorRegister()
4.3.5 AttsAddGroup()

4.3.6 AttsRemoveGroup()
4.3.7 AttsSetAttr()

4.3.8 AttsGetAttr()

4.3.9 AttsHandleValuelnd()
4.3.10 AttsHandleValueNtf()
4.3.11 AttsSetCsrk()

4.3.12 AttsSetSignCounter()
4.3.13 AttsGetSignCounter()
Callback interface

4.4.1 (*attsReadCback _t)()
4.4.2 (*attsWriteCback_t)()

4.4.3 (*attsAuthorCback_t)()

Copyright © 2009-2016 ARM. All rights reserved.

Confidential

Attribute Protocol API

Page 5

18
19
19
19
20
20
20
20
21
21
21
21
22
22
22
22
22
23
23
23
24
24
24
25
25
25

26

27

5.1 Constants and data types

5.1.1attsCccSet_t

5.2 Functions

5.2.1 AttsCccRegister()

5.2.2 AttsCcclnitTable()

5.2.3AttsCccClearTable()

5.2.4 AttsCccGet()

5.2.5AttsCccSet()

5.2.6 AttsCccEnabled()

5.3 Callback Interface

5.3.1attsCccEwvt_t

5.3.2 (*attsCccCback_t)()

6 Client interface

6.1 Functions

6.1.1 Attclnit()

6.1.2 AttcSignlnit()

6.1.3 AttcFindinfoReq()

6.1.4 AttcFindByTypeValueReq()

6.1.5 AttcReadByTypeReq()

6.1.6 AttcReadReq()

6.1.7 AttcReadLongReq()

6.1.8 AttcReadMultipleReq()

6.1.9 AttcReadByGroupTypeReq()

6.1.10
6.1.11
6.1.12
6.1.13

6.1.14

AttcWriteReq()
AttcWriteCmd()
AttcSignedWriteCmd()
AttcPrepareWriteReq()

AttcExecuteWriteReq()

Copyright © 2009-2016 ARM. All rights reserved.

Confidential

Attribute Protocol API

Page 6

28
28
28
28
28
29
29
29
29
30
30
30

31
31
31
31
31
31
32
32
33
33
33
34
34
35
35
36

6.1.15 AttcCancelReq()

7 Client Discovery Interface

7.1

7.2

Constants and data types
7.1.1Discovery Settings
7.1.2 attcDiscChar _t

7.1.3 attcDiscCfg_t

7.1.4 attcDiscCb _t
Functions

7.2.1 AttcDiscService()
7.2.2 AttcDiscServiceCmpl()
7.2.3 AttcDiscCharStart()
7.2.4 AttcDiscCharCmpl()
7.2.5 AttcDiscConfigStart()
7.2.6 AttcDiscConfigCmpl()

7.2.7 AttcDiscConfigResume()

8 GATT Discovery Procedures

9 Scenarios

9.1
9.2
9.3
9.4

Server operations
Client operations
Client prepare and execute write

Client discovery and configuration

Copyright © 2009-2016 ARM. All rights reserved.

Confidential

Attribute Protocol API

Page 7

36

37
37
37
38
38
38
39
39
39
39
40
40
40
41

42

44
44
45
46

47

Attribute Protocol API

1 Preface

This preface introduces the Cordio Stack Attribute Protocol API Reference Manual.

1.1 About this book

This document describes the Attribute Protocol (ATT) API and lists the API functions and their
parameters.

1.1.1 Intended audience

This book is written for experienced software engineers who might or might not have experience
with ARM products. Such engineers typically have experience writing Bluetooth applications but
might have limited experience with the Cordio software stack.

It is also assumed that the readers have access to all necessary tools.

1.1.2 Using this book
This book is organized into the following chapters:

e Introduction
Read this for an overview of the Attribute Protocol subsystem.
e Main Interface
Read this for a description of the portion of the API that is common to the client and
server.
e Server Interface
Read this for a description how the API controls the Attribute Protocol Server (ATTS).
e Server Client Characteristic Configuration Interface
Read this for a description of the ATTS interface functions used for managing Client
Characteristic Configuration Descriptors (CCCD).
e Client Interface
Read this for a description of the functions related to initializing and initiating the
attribute client.
e Client Discovery Interface
Read this for a description of the utility interface that simplifies common GATT client
service and characteristic discovery procedures.
e GATT Discovery Procedures
Read this for a description of how the ATTC API is used to perform GATT discovery

procedures.
e Scenarios

Read this for a description of typical scenarios that use the API.
e Revisions

Read this chapter for descriptions of the changes between document versions.

1.1.3 Terms and abbreviations
For a list of ARM terms, see the ARM glossary.

Copyright © 2009-2016 ARM. All rights reserved. Page 8

Confidential

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

Attribute Protocol API

Terms specific to the Cordio software are listed below:

Term Description

ACL Asynchronous Connectionless data packet

AD Advertising Data

ARQ Automatic Repeat reQuest

ATT Attribute Protocol, also attribute protocol software subsystem
ATTC Attribute Protocol Client software subsystem

ATTS Attribute Protocol Server software subsystem

CCCor CCCD Client Characteristic Configuration Descriptor

CID Connection ldentifier

CSRK Connection Signature Resolving Key

DM Device Manager software subsystem

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

0ooB Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem
SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.
Copyright © 2009-2016 ARM. All rights reserved. Page 9

Confidential

1.1.4 Conventions

Attribute Protocol API

The following table describes the typographical conventions:

Style

Italic

bold

MONOSPACE

MONOSPACE

monospace italic

monospace bold

<and>

SMALL CAPITALS

1.1.5 Additional reading

Typographical conventions
Purpose

Introduces special terminology, denotes cross-references, and
citations.

Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

Denotes language keywords when used outside example code.

Encloses replaceable terms for assembler syntax where they
appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Used in body text for a few terms that have specific technical
meanings, that are defined in the ARM® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,
and UNPREDICTABLE.

This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

e Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

Copyright © 2009-2016 ARM. All rights reserved. Page 10

Confidential

http://infocenter.arm.com/

Attribute Protocol API

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

1.2.1 Feedback on content
If you have comments on content then send an e-mail to errata@arm. com. Give:

The title.

The number, ARM-EPM-115143.

The page numbers to which your comments apply.
A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.

Copyright © 2009-2016 ARM. All rights reserved. Page 11

Confidential

Attribute Protocol API

2 Introduction

This document describes the API of the Attribute Protocol (ATT) subsystem. The attribute
protocol is a core component of the Bluetooth LE protocol stack responsible for reading and
writing attributes. The ATT API is divided into three parts: The ATT server interface (ATTS),
the ATT client interface (ATTC) and the main interface common to both ATTS and ATTC.

Cordio's ATT subsystem also implements the features of the Generic Attribute Profile (GATT)
specification.

Copyright © 2009-2016 ARM. All rights reserved. Page 12
Confidential

3 Main Interface

This portion of the ATT API is common to both client and server.

3.1 Constants and data types

3.1.1 Status

This parameter indicates the status of an attribute protocol operation.

Attribute Protocol API

Table 1 Main interface types

Name

Description

ATT_SUCCESS

Operation successful.

ATT_ERR_HANDLE

Invalid handle.

ATT_ERR_READ

Read not permitted.

ATT_ERR_WRITE

Write not permitted.

ATT_ERR_INVALID_PDU

Invalid pdu.

ATT_ERR_AUTH

Insufficient authentication.

ATT_ERR_NOT_SUP

Request not supported.

ATT_ERR_OFFSET

Invalid offset.

ATT_ERR_AUTHOR

Insufficient authorization.

ATT_ERR_QUEUE_FULL

Prepare queue full.

ATT_ERR_NOT_FOUND

Attribute not found.

ATT_ERR_NOT_LONG

Attribute not long.

ATT_ERR_KEY_SIZE

Insufficient encryption key size.

ATT_ERR_LENGTH

Invalid attribute value length.

ATT_ERR_UNLIKELY

Other unlikely error.

ATT_ERR_ENC

Insufficient encryption.

ATT_ERR_GROUP_TYPE

Unsupported group type.

ATT_ERR_RESOURCES

Insufficient resources.

ATT_ERR_CCCD

CCCD improperly configured.

ATT_ERR_IN_PROGRESS

Procedure already in progress.

ATT_ERR_RANGE

Value out of range.

ATT_ERR_MEMORY

Out of memory.

ATT_ERR_TIMEOUT

Transaction timeout.

Copyright © 2009-2016 ARM. All rights reserved.

Confidential

Page 13

Attribute Protocol API

ATT_ERR_OVERFLOW

Transaction overflow.

ATT_ERR_INVALID_RSP

Invalid response PDU.

ATT_ERR_CANCELLED

Request cancelled.

ATT_ERR_UNDEFINED

Other undefined error.

ATT_ERR_REQ_NOT_FOUND

Required characteristic not found.

ATT_ERR_MTU_EXCEEDED

Attribute PDU length exceeded MTU size

ATT_CONTINUING

Procedure continuing.

ATT_ERR_VALUE_RANGE

Value out of range.

HCI status values can also be passed through ATT. Since the values of HCI and ATT error
codes overlap, the constant ATT_HCI_ERR_BASE is added to HCI error codes before being passed
through ATT. See the Cordio HCI API Reference Manual for HCI error code values.

3.1.2 Operation

This parameter indicates the over-the-air attribute protocol operation.

Table 2 Operation parameter values

Name

Description

ATT_PDU_ERR_RSP

Error response.

ATT_PDU_MTU_REQ

Exchange mtu request.

ATT_PDU_MTU_RSP

Exchange mtu response.

ATT_PDU_FIND_INFO_REQ

Find information request.

ATT_PDU_FIND_INFO_RSP

Find information response.

ATT_PDU_FIND_TYPE_REQ

Find by type value request.

ATT_PDU_FIND_TYPE_RSP

Find by type value response.

ATT_PDU_READ_TYPE_REQ

Read by type request.

ATT_PDU_READ_TYPE_RSP

Read by type response.

ATT_PDU_READ_REQ

Read request.

ATT_PDU_READ_RSP

Read response.

ATT_PDU_READ_BLOB_REQ

Read blob request.

ATT_PDU_READ_BLOB_RSP

Read blob response.

ATT_PDU_READ_MULT_REQ

Read multiple request.

ATT_PDU_READ_MULT_RSP

Read multiple response.

Copyright © 2009-2016 ARM. All rights reserved.

Page 14

Confidential

Attribute Protocol API

ATT_PDU_READ_GROUP_TYPE_REQ Read by group type request.

ATT_PDU_READ_GROUP_TYPE_RSP Read by group type response.

ATT_PDU_WRITE_REQ

Write request.

ATT_PDU_WRITE_RSP

Write response.

ATT_PDU_WRITE_CMD

Write command.

ATT_PDU_SIGNED_WRITE_CMD

Signed write command.

ATT_PDU_PREP_WRITE_REQ

Prepare write request.

ATT_PDU_PREP_WRITE_RSP

Prepare write response.

ATT_PDU_EXEC_WRITE_REQ

Execute write request.

ATT_PDU_EXEC_WRITE_RSP

Execute write response.

ATT_PDU_VALUE_NTF

Handle value notification.

ATT_PDU_VALUE_IND

Handle value indication.

ATT_PDU_VALUE_CNF

Handle value confirmation.

ATT_PDU_MAX

PDU maximum.

3.1.3 attCfg_t

This data type contains ATT run-time configurable parameters.

Table 3 attCfg_t parameters

Type Name

Description

wsfTimerTicks_t discIdleTimeout

ATT server service discovery connection idle timeout in
seconds.

uintle_t mtu Desired ATT MTU.
uint8_t transTimeout Transaction Timeout in seconds.
uint8_t numPrepWrites Number of queued prepare writes supported by server.

3.2 Functions

3.2.1 AttRegister()
Register a callback with ATT.

Syntax:

void AttRegister(attCback_t cback)

Where:

Copyright © 2009-2016 ARM. All rights reserved.

Page 15

Confidential

Attribute Protocol API

e cbhack: Client callback function. See 3.3.1.

3.2.2 AttConnRegister()

Register a connection callback with ATT. The callback is typically used to manage the attribute
server database.

Syntax:
void AttConnRegister(dmCback_t cbhack)

Where:

e chack: DM client callback function. See the Cordio Device Manager APl Reference
Manual for more information.

3.2.3 AttGetMtu()
Get the attribute protocol MTU of a connection.

Syntax:
uintle_t AttGetMtu(dmConnId_t connId)
Where:

e connId: DM connection ID.

3.3 Callback interface

3.3.1 (*attCback t)()

This callback function sends ATT events to the client application. A single callback function is
used for both ATTS and ATTC.

Syntax:

void (*attCback_t) (attEvt_t *pEvt)
Where:

e pEvt: Pointerto ATT event structure.

3.3.2 Callback events
The following callback event values are passed in the ATT event structure.

Table 4 Callback events

Name Description
ATTC_FIND_INFO_RSP Find information response.
Copyright © 2009-2016 ARM. All rights reserved. Page 16

Confidential

Attribute Protocol API

ATTC_FIND_BY_TYPE_VALUE_RSP Find by type value response.

ATTC_READ_BY_TYPE_RSP Read by type value response.
ATTC_READ_RSP Read response.
ATTC_READ_LONG_RSP Read long response.
ATTC_READ_MULTIPLE_RSP Read multiple response.

ATTC_READ_BY_GROUP_TYPE_RSP Read group type response.

ATTC_WRITE_RSP Write response.

ATTC_WRITE_CMD_RSP Write command response.
ATTC_PREPARE_WRITE_RSP Prepare write response.
ATTC_EXECUTE_WRITE_RSP Execute write response.
ATTC_HANDLE_VALUE_NTF Handle value notification.
ATTC_HANDLE_VALUE_IND Handle value indication.
ATTS_HANDLE_VALUE_CNF Handle value confirmation.
ATTS_CCC_STATE_IND Client characteristic configuration state change

3.3.3 attEvt t

This data type is used for all callback events.

Table 5 attEvt_t types

Type Name Description

uint8_t hdr.event Callback event.

uintlé_t hdr.param DM connection ID.

uint8_t hdr.status Event status.

uint8_t * pValue Pointer to value data, valid if valueLen > 0.
uintleé_t valuelen Length of value data.

uintlé_t handle Attribute handle.

bool_t continuing TRUE if more response packets expected.

Copyright © 2009-2016 ARM. All rights reserved.

Confidential

Page 17

Attribute Protocol API

4 Server Interface
This API controls the operation of the attribute protocol server (ATTS).

4.1 Attribute server operation

An attribute server provides access to an attribute database stored within the server. According
to the Bluetooth specification, attributes are collected into groups of characteristics, which are
further collected into a service. A service is a collection of characteristics designed to
accomplish a particular function, such as an alert service or a sensor service.

Figure 1 shows how services, characteristics, and attributes are organized according to the
Bluetooth specification. An attribute database typically contains one or more services. Each
service contains a set of characteristics, which is made up of one or more attributes. The type of
attribute is uniquely identified by a UUID and an instance of an attribute in a server is uniquely
identified by a handle. An attribute typically contains data that can be read or written by the
attribute client on a peer device.

Service A

Characteristic X
Attribute a
Attribute b

Characteristic Y
Attribute c
Attribute d

Figure 1. Services, characteristics, and attributes stored in an attribute server

In the ATTS implementation, the attribute database consists of a linked list of one or more group
structures. Each attribute group structure points to an array of attribute structures. Each attribute
structure contains the UUID, data, and other information for the attribute. The data structures in

the ATTS database implementation are illustrated in Figure 2.

The group structure contains a pointer to the attribute array, the handle range of the attributes it
references, and other data. A database implementation will typically use one group structure per
service, although this is not a requirement; a group can contain multiple services, or a service can
Copyright © 2009-2016 ARM. All rights reserved. Page 18

Confidential

Attribute Protocol API

be implemented with multiple groups.

Group Group
Structure Structure

Attribute Attribute

Attribute Structure

=

Figure 2. ATTS attribute database data structures

4.2 Constants and data types

4.2.1 Attribute settings
This bit mask parameter controls the settings of an attribute.

Table 6 Server interface types

Name Value Description

ATTS_SET_UUID_128 0x01 Set if the UUID is 128 bits in length.

ATTS_SET_WRITE_CBACK 0x02 Set if the group callback is executed when this attribute is
written by a client device

ATTS_SET_READ_CBACK 0x04 Set if the group callback is executed when this attribute is read
by a client device.

ATTS_SET_VARIABLE_LEN 0x08 Set if the attribute has a variable length.

ATTS_SET_ALLOW_OFFSET 0x10 Set if writes are allowed with an offset.

ATTS_SET_CCC 0x20 Set if the attribute is a client characteristic configuration
descriptor.

ATTS_SET_ALLOW_SIGNED 0x40 Set if signed writes are allowed.

ATTS_SET_REQ_SIGNED 0x80 Set if signed writes are required if link is not encrypted.

4.2.2 Attribute security settings

This bit mask parameter controls the security settings of an attribute. These values can be set in
any combination.

Copyright © 2009-2016 ARM. All rights reserved. Page 19

Confidential

Attribute Protocol API

Table 7 Attribute security settings

Name Value Description
ATTS_PERMIT_READ 0x01 Set if attribute can be read.
ATTS_PERMIT_READ_AUTH 0x02 Set if attribute read requires authentication.

ATTS_PERMIT_READ_AUTHORIZ 0x04 Set if attribute read requires authorization.

ATTS_PERMIT_READ_ENC 0x08 Set if attribute read requires encryption.
ATTS_PERMIT_WRITE 0x10 Set if attribute can be written.
ATTS_PERMIT_WRITE_AUTH 0x20 Set if attribute write requires authentication.

ATTS_PERMIT_WRITE_AUTHORIZ 0x40 Set if attribute write requires authorization.

ATTS_PERMIT_WRITE_ENC 0x80 Set if attribute write requires encryption.

4.2.3 Attribute UUID

An attribute UUID is either 16 bits or 128 bits in length. The UUID value is stored as a byte
array in little endian format. For example:

/* 16 bit UUID value 0x0016 */
uint8 uuidle[] = {0xle, 0x00};

/* 128 bit UUID wvalue 00001234-0000-1000-8000-00805F9B34FB */
uint8 uwuidl28[] = {0xFB, 0x34, 0x9B, O0Ox5F, 0x80, 0x00, 0x00, 0x80,
0x00, 0Ox10, 0x00, O0x00, 0x34, 0x12, 0x00, 0x00};

4.2.4 Attribute value

The attribute value is stored as a byte array. If the attribute is an integer, the value is stored in
little endian format.

4.2.5 Attribute handles

The attribute protocol uses handles to uniquely identify attributes. To save memory, the attribute
server does not store a handle for each attribute. Rather, it uses the starting handle value in each

group to derive the handle of a particular attribute in the group. The start handle is the handle of
the attribute at index zero of the group’s attribute array. The handle of each subsequent attribute
is simply the start handle plus the attributes index in the array.

4.2.6 attsAttr_t
This data type defines the structure used by an attribute in a group.

Table 8 attsAttr_t types

Type Name Description
uint8_t * pUuid Pointer to the attribute’s UUID.
Copyright © 2009-2016 ARM. All rights reserved. Page 20

Confidential

Attribute Protocol API

uint8_t * pValue Pointer to the attribute’s value.

uintlé_t * pLen Pointer to the length of the attribute’s value.
uintle_t maxLen Maximum length of attribute’s value.
uint8_t settings Attribute settings. See 4.2.1.

uint8_t permissions Attribute permissions. See 4.2.2.

4.2.7 attsGroup_t
This data type defines the structure used by a group.

Table 9 attsGroup_t types

Type Name Description

attsGroup_t * pNext For internal use only.

attsAttr_t * pAttr Pointer to attribute list for this group.
attsReadCback_t readCback Read callback function. See 4.4.1.
attsWriteCback_t writeCback Write callback function. See 4.4.2.
uintlé_t startHandle The handle of the first attribute in this group.
uintlé_t endHandle The handle of the last attribute in this group.

4.3 Functions

4.3.1 Attslnit()

This function is called to initialize the attribute server. This function is generally called once
during system initialization before any other ATTS API functions are called.

Syntax:

void AttsInit(void)

4.3.2 AttsindInit()

This function is called to initialize the attribute server for indications/notifications. This function
is generally called once during system initialization before any other ATTS API functions are
called.

Syntax:

void AttsIndInit(void)

Copyright © 2009-2016 ARM. All rights reserved. Page 21

Confidential

Attribute Protocol API

4.3.3 AttsSignlInit()

This function is called to initialize the attribute server for data signing. This function is generally
called once during system initialization before any other ATTS API functions are called.

Syntax:
void AttsSignInit(void)

4.3.4 AttsAuthorRegister()

This function is called to register an authorization callback with the attribute server. This
provides a mechanism to allow user authorization of read or write operations on a particular
attribute.

Syntax:
void AttsAuthorRegister(attsAuthorCback_t cback)

4.3.5 AttsAddGroup()

Add an attribute group to the attribute server. The memory for the group structure is allocated by
the caller and can only be deallocated after AttsRemoveGroup() is called.

Syntax:
void AttsAddGroup(attsGroup_t *pGroup)

Where:
e pGroup: Pointer to an attribute group structure. See 4.2.7.

4.3.6 AttsRemoveGroup()
Remove an attribute group from the attribute server.

Syntax:
void AttsRemoveGroup(uintl6_t startHandle)
Where:
e startHandle: Start handle of attribute group to be removed.

4.3.7 AttsSetAttr()

Set an attribute value in the attribute server. Before calling this function the group containing the
attribute must be added to the server by calling AttsAddGroup().

Syntax:
void AttsSetAttr(uintl6_t handle, uintl6_t valuelLen, uint8_t *pValue)

Copyright © 2009-2016 ARM. All rights reserved. Page 22

Confidential

Attribute Protocol API

Where:

e handle: Attribute handle.
e valuelen: Attribute length.
e pValue. Attribute value. See 4.2.4.

This function returns ATT_SUCCESS if successful otherwise error.

4.3.8 AttsGetAttr()
Get an attribute value from the attribute server.

Syntax:
void AttsGetAttr(uintl6_t handle, uintl6_t *plLen, uint8_t **pValue)

Where:

e handle: Attribute handle.
e plLen: Pointer to the attribute length.
e pvValue. Attribute value. See 4.2.4.

This function returns ATT_SUCCESS if successful otherwise error.
This function returns the attribute length in pLen and a pointer to the attribute value in pvalue.
Note that pvaTlue directly accesses memory inside the attribute database.

4.3.9 AttsHandleValuelnd()
Send an attribute protocol Handle Value Indication.

Syntax:

void AttsHandleValueInd(dmConnId_t connld, uintl6_t handle, uintl6_t
valuelLen, uint8_t *pValue)

Where:

connId: DM connection ID.
handle: Attribute handle.
valuelLLen: Length of value data.
pvalue. Pointer to value data.

When the operation is complete the client’s callback function is called with an
ATTS_HANDLE_VALUE_CNF event.

4.3.10 AttsHandleValueNtf()
Send an attribute protocol Handle Value Notification.

Syntax:

Copyright © 2009-2016 ARM. All rights reserved. Page 23

Confidential

Attribute Protocol API

void AttsHandleValueNtf(dmConnId_t connId, uintl6_t handle, uintl6_t
valuelLen, uint8_t *pValue)

Where:

e connId: DM connection ID.

e handle: Attribute handle.

e valuelen: Length of value data.
e pValue. Pointer to value data.

When the operation is complete the client’s callback function is called with an
ATTS_HANDLE_VALUE_CNF event.

4.3.11 AttsSetCsrk()

Set the peer's data signing key on this connection. This function is typically called from the ATT
connection callback when the connection is established. The caller is responsible for
maintaining the memory that contains the key.

Syntax:
void AttsSetCsrk(dmConnId_t connlId, uint8_t *pCsrk)

Where:

e connId: DM connection ID.
e pCsrk: Pointer to data signing key (CSRK).

4.3.12 AttsSetSignCounter()

Set the peer's sign counter on this connection. This function is typically called from the ATT
connection callback when the connection is established. ATT maintains the value of the sign
counter internally and sets the value when a signed packet is successfully received.

Syntax:
void AttsSetSignCounter(dmConnId_t connld, uint32_t signCounter)

Where:

e connId: DM connection ID.
e handle: Attribute handle.

4.3.13 AttsGetSignCounter()

Get the current value peer's sign counter on this connection. This function is typically called
from the ATT connection callback when the connection is closed so the application can store the
sign counter for use on future connections.

Syntax:

Copyright © 2009-2016 ARM. All rights reserved. Page 24

Confidential

Attribute Protocol API

uint32_t AttsGetSignCounter(dmConnId_t connId)

Where:

e connId: DM connection ID.
This function returns the current value of the sign counter.

4.4 Callback interface

4.4.1 (*attsReadCback t)()

This is the attribute server read callback. It is executed on an attribute read operation if bitmask
ATTS_SET_READ_CBACK is set in the settings field of the attribute structure.

Syntax:

uint8_t (*attsReadCback_t)(dmConnId_t connId, uintl6_t handle, uint8_t
operation, uintl6_t offset, attsAttr_t *pAttr)

Where:

connId: DM connection ID.

handle: Attribute handle.

operation: Operation type. See 3.1.2.
offset: Read data offset.

pAttr: Pointer to attribute structure.

This function returns a status value (see 3.1.1). If the operation is successful then ATT_SUCCESS
should be returned.

For a read operation, if the operation is successful the function must set pAttr->pValue to the
data to be read. In addition, if the attribute is variable length then pAttr->pLen must be set as
well.

4.4.2 (*attsWriteCback t)()

This is the attribute server write callback. It is executed on an attribute write operation if
bitmask ATTS_SET_WRITE_CBACK is set in the settings field of the attribute structure.

Syntax:

void (*attsWriteCback_t) (dmConnId_t connlId, uintl6_t handle, uint8_t
operation, uintl6_t offset, uintl6e_t len, uint8_t *pValue,
attsAttr_t *pAttr)

Where:

e connId: DM connection ID.
e handle: Attribute handle.
e operation: Operation type. See 3.1.2.

Copyright © 2009-2016 ARM. All rights reserved. Page 25

Confidential

Attribute Protocol API

offset: Write data offset.

len: Length of data to write.
pvalue: Data to write.

e pAttr: Pointer to attribute structure.

This function returns a status value (see 3.1.1). If the operation is successful then ATT_SUCCESS
should be returned.

4.4.3 (*attsAuthorCback t)()

This callback function is executed when a read or write operation occurs and the security field of
an attribute structure is set to ATTS_PERMIT_READ_AUTHORIZ or ATTS_PERMIT_WRITE_AUTHORIZ
respectively.

Syntax:

uint8_t (*attsAuthorCback_t) (dmConnId_t connId, uint8_t permit, uintl6_t
handle)

Where:

e connId: DM connection ID.

e permit: Setto ATTS_PERMIT_WRITE for a write operation or ATTS_PERMIT_READ for a
read operation.
e handle: Attribute handle.

This function returns a status value (see 3.1.1). If the operation is successful then
ATT_SUCCESS should be returned. If the operation fails then ATTS_ERR_AUTHOR is typically
returned.

Copyright © 2009-2016 ARM. All rights reserved. Page 26

Confidential

Attribute Protocol API

5 Server Client Characteristic Configuration Interface

The following ATTS interface functions are a utility service for managing client characteristic
configuration descriptors (abbreviated as CCC or CCCD). The client characteristic configuration
descriptor is used to enable or disable indications or notifications of the characteristic value
associated with the descriptor.

The Bluetooth specification has certain requirements for CCCDs:

1. The server must maintain the value of the CCCD separately for each client.

2. If the server and client are bonded, the value of the CCCD is persistent across
connections.

3. If the server and client are not bonded, the value of the CCCD is reset to zero when the
client connects.

The functions in this interface simplify and centralize the management of CCCDs. However if a
server application does not use notifications or indications, or does not support bonding, then
these functions do not need to be used.

An application using this interface is responsible for defining certain data structures, as shown
below in Figure 3.

CCCD Index
Enumeration

Bonded
Device CCCD

CCCD Connection
Settings Table Storage Buffer

Figure 3. CCCD data structures defined by the application

The data structures consist of bonded device CCCD tables, a CCCD settings table, a connection
storage buffer, and a CCCD index enumeration. The Bonded device CCCD tables maintain
persistent storage of the CCCD values for each bonded device. The CCCD settings table
contains the CCCD attribute handle, security settings, and permitted CCCD values. The
connection storage buffer holds separate CCCD values for all simultaneous connections. All
tables are indexed by the CCCD index enumeration that defines the position in the table
associated with each CCCD.

Copyright © 2009-2016 ARM. All rights reserved. Page 27

Confidential

Attribute Protocol API

5.1 Constants and data types

5.1.1 attsCccSet_t
This data type defines the client characteristic configuration settings.

Table 10 attsCccSet_t types

Type Name Description

uintle_t handle Client characteristc configuration descriptor handle.
uintlé_t valueRange Acceptable value range of the descriptor value.

uint8_t seclLevel Security level of characteristic value associated with the CCCD.

5.2 Functions

5.2.1 AttsCccRegister()

Register the utility service for managing client characteristic configuration descriptors. This
function is typically called once on system initialization.

Syntax:

void AttsCccRegister(uint8_t setlLen, attsCccSet_t *pSet, attsCccCback_t
cback)

Where:

e setlLen: Length of settings array.
e pSet: Array of CCC descriptor settings.
e cback: Client callback function.

5.2.2 AttsCcclnitTable()

Initialize the client characteristic configuration descriptor value table for a connection. The table
is initialized with the values from pCccTb1. If pCccTb1 is NULL the table will be initialized to
zero. This function is typically called when a connection is established or when a device is
bonded.

Syntax:
void AttsCccInitTable(dmConnId_t connId, uintl6_t *pCccTbl)

Where:

e connId: DM connection ID.
e pCccTb1: Pointer to the descriptor value array. The length of the array must equal the
value of setLen passed to AttsCccRegister().

Copyright © 2009-2016 ARM. All rights reserved. Page 28

Confidential

Attribute Protocol API

5.2.3 AttsCccClearTable()

Clear and deallocate the client characteristic configuration descriptor value table for a
connection. This function must be called when a connection is closed.

Syntax:
void AttsCccClearTable(dmConnId_t connId)

Where:
e connId: DM connection ID.

5.2.4 AttsCccGet()

Get the value of a client characteristic configuration descriptor by its index. If not found, return
zero.

Syntax:
uintle_t AttsCccGet(dmConnId_t connId, uint8_t idx)

Where:

e connId: DM connection ID.
e idx: Index of descriptor in CCC descriptor handle table.

5.2.5 AttsCccSet()
Set the value of a client characteristic configuration descriptor by its index.

Syntax:
void AttsCccSet(dmConnId_t connId, uint8_t idx, uintl6_t value)

Where:

e connId: DM connection ID.
e idx: Index of descriptor in CCC descriptor handle table.
e value: Value of the descriptor.

5.2.6 AttsCccEnabled()

Check if a client characteristic configuration descriptor is enabled and if the characteristic's
security level has been met.

Syntax:
uintl6e_t AttsCccEnabled(dmConnId_t connId, uint8_t idx)
Where:

Copyright © 2009-2016 ARM. All rights reserved. Page 29

Confidential

Attribute Protocol API

e connId: DM connection ID.
e idx: Index of descriptor in CCC descriptor handle table.

5.3 Callback Interface

5.3.1 attsCccEvt _t
This data type defines the client characteristic configuration callback structure.

Table 11 attsCccEvt_t callback types

Type Name Description
uint8_t hdr.event Callback event.
uintlé_t hdr.param DM connection ID
uintlé_t handle CCCD handle
uintlé_t value CCCD value.
uint8_t idx CCCD index.

5.3.2 (*attsCccCback_t)()

Client characteristic configuration callback. This function is executed when a CCCD value
changes. This happens when a peer device writes a new value to the CCCD or when a CCCD
table is initialized by calling function AttsCccInitTable().

Syntax:
void (*attsCccCback_t) (attsCccEvt_t *pEvt)

Where:

e pEvt: Pointer to callback structure.

Copyright © 2009-2016 ARM. All rights reserved. Page 30

Confidential

Attribute Protocol API

6 Client interface

This section describes functions related to initializing and initiating the attribute client.

6.1 Functions

6.1.1 Attclnit()

This function is called to initialize the attribute client. This function is generally called once
during system initialization before any other ATTC API functions are called.

Syntax:
void AttcInit(void)

6.1.2 AttcSignlinit()

This function is called to initialize the attribute client for data signing. This function is generally
called once during system initialization before any other ATTC API functions are called.

Syntax:
void AttcSignInit(void)

6.1.3 AttcFindInfoReq()
Initiate an attribute protocol Find Information Request.

Syntax:

void AttcFindInfoReq(dmConnId_t connlId, uintl6_t startHandle, uintl6_t
endHandle, bool_t continuing)

Where:

connId: DM connection ID.

startHandle: Attribute start handle.

endHandle: Attribute end handle.

continuing: TRUE if ATTC continues sending requests until complete.

When a response is received the client’s callback function is called with an
ATTC_FIND_INFO_RSP. If parameter continuing is TRUE, ATTC will automatically send the
next request until all responses are received or an error is received. If parameter continuing is
FALSE, the client application must call this function again and update the start handle
appropriately to send the next response.

6.1.4 AttcFindByTypeValueReq()
Initiate an attribute protocol Find By Type Value Request.

Syntax:

Copyright © 2009-2016 ARM. All rights reserved. Page 31

Confidential

Attribute Protocol API

void AttcFindByTypeValueReq(dmConnId_t connId, uintl6_t startHandle,
uintlée_t endHandle, uintl6_t uuidl6, uintl6_t valuelen, uint8_t
*pValue, bool_t continuing)

Where:

e connId: DM connection ID.

e startHandle: Attribute start handle.

e endHandle: Attribute end handle.

e uuidl6: 16-bit UUID to find.

e valuelen: Length of value data.

e pvalue: Pointer to value data.

e continuing: TRUE if ATTC continues sending requests until complete.

When a response is received the client’s callback function is called with an
ATTC_FIND_BY_TYPE_VALUE_RSP. If parameter continuing is TRUE, ATTC will automatically
send the next request until all responses are received or an error is received. If parameter
continuing is FALSE, the client application must call this function again and update the start
handle appropriately to send the next response.

6.1.5 AttcReadByTypeReq()
Initiate an attribute protocol Read By Type Request.

Syntax:

void AttcReadByTypeReq(dmConnId_t connId, uintl6_t startHandle, uintl6_t
endHandle, uint8_t uuidLen, uint8_t *pUuid, bool_t continuing)

Where:

connId: DM connection ID.

startHandle: Attribute start handle.

endHandle: Attribute end handle.

uuidLen: Length of UUID (2 or 16).

pUuid: Pointer to UUID data.

continuing: TRUE if ATTC continues sending requests until complete.

When a response is received the client’s callback function is called with an
ATTC_READ_BY_TYPE_RSP. If parameter continuing is TRUE, ATTC will automatically send the
next request until all responses are received or an error is received. If parameter continuing is
FALSE, the client application must call this function again and update the start handle
appropriately to send the next response.

6.1.6 AttcReadReq()
Initiate an attribute protocol Read Request.

Syntax:

Copyright © 2009-2016 ARM. All rights reserved. Page 32

Confidential

Attribute Protocol API

void AttcReadReq(dmConnId_t connlId, uintl6_t handle)
Where:

e connId: DM connection ID.
e handle: Attribute handle.

When a response is received the client’s callback function is called with an ATTC_READ _RSP.

6.1.7 AttcReadLongReq()
Initiate an attribute protocol Read Long Request.

Syntax:

void AttcReadlLongReq(dmConnId_t connId, uintl6_t handle, uintl6_t offset,
bool_t continuing)

Where:
e connId: DM connection ID.
e handle: Attribute handle.
e offset: Read attribute data starting at this offset.
e continuing: TRUE if ATTC continues sending requests until complete.

When a response is received the client’s callback function is called with an
ATTC_READ_LONG_RSP. If parameter continuing is TRUE, ATTC will automatically send the
next request until all responses are received or an error is received. If parameter continuing is
FALSE, the client application must call this function again and update the offset appropriately to
send the next response.

6.1.8 AttcReadMultipleReq()
Initiate an attribute protocol Read Multiple Request.

Syntax:

void AttcReadMultipleReq(dmConnId_t connId, uint8_t numHandles, uintl6_t
*pHandles)

Where:

e connId: DM connection ID.
e numHandles: Number of handles in attribute handle list.
e pHandles: List of attribute handles.

When a response is received the client’s callback function is called with an ATTC_READ
_MULTIPLE_RSP.

6.1.9 AttcReadByGroupTypeReq()
Initiate an attribute protocol Read By GroupType Request.

Copyright © 2009-2016 ARM. All rights reserved. Page 33

Confidential

Attribute Protocol API

Syntax:

void AttcReadByGroupTypeReq(dmConnId_t connld, uintl6_t startHandle,
uintlée_t endHandle, uint8_t uuidLen, uint8_t *pUuid, bool_t
continuing)

Where:
e connId: DM connection ID.
e startHandle: Attribute start handle.
e endHandle: Attribute end handle.
e uuidLen: Length of UUID (2 or 16).
e pUuid: Pointer to UUID data.

e continuing: TRUE if ATTC continues sending requests until complete.

When a response is received the client’s callback function is called with an
ATTC_READ_BY_GROUP_TYPE_RSP. If parameter continuing is TRUE, ATTC will automatically
send the next request until all responses are received or an error is received. If parameter
continuing is FALSE, the client application must call this function again and update the start
handle appropriately to send the next response.

6.1.10 AttcWriteReq()
Initiate an attribute protocol Write Request.

Syntax:

void AttcWriteReq(dmConnId_t connld, uintl6_t handle, uintl6_t valuelen,
uint8_t *pValue)

Where:
e connId: DM connection ID.
e handle: Attribute start handle.
e valuelen: Length of value data.
e pValue: Pointer to value data.

When a response is received the client’s callback function is called with an ATTC_WRITE_RSP.

6.1.11 AttcWriteCmd()
Initiate an attribute protocol Write Command.

Syntax:

void AttcWriteCmd(dmConnId_t connId, uintl6_t handle, uintl6_t valuelen,
uint8_t *pValue)

Where:

e connId: DM connection ID.

Copyright © 2009-2016 ARM. All rights reserved. Page 34

Confidential

Attribute Protocol API

e handle: Attribute start handle.
e valuelLen: Length of value data.
e pvalue: Pointer to value data.

When the packet has been sent the client’s callback function is called with an
ATTC_WRITE_CMD_RSP.

6.1.12 AttcSignedWriteCmd()
Initiate an attribute protocol Write Command.

Syntax:

void AttcSignedWriteCmd(dmConnId_t connld, uintl6_t handle, uint32_t
signCounter, uintl6_t valuelLen, uint8_t *pValue)

Where:
e connId: DM connection ID.
e handle: Attribute start handle.
e signCounter: Value of sign counter.
e valuelLen: Length of value data.
e pValue: Pointer to value data.

When the packet has been sent the client’s callback function is called with an
ATTC_WRITE_CMD_RSP.

Note that the application is responsible for maintaining the value of the sign counter. The sign
counter should be incremented each time this function is called.

6.1.13 AttcPrepareWriteReq()
Initiate an attribute protocol Prepare Write Request.

Syntax:

void AttcPrepareWriteReq(dmConnId_t connld, uintl6_t handle, uintl6_t
offset, uintl6_t valuelen, uint8_t *pValue, bool_t valueByRef,
bool_t continuing)

Where:

connId: DM connection ID.

handle: Attribute start handle.

offset: Write attribute data starting at this offset.

valuelLen: Length of value data.

pvalue: Pointer to value data.

valueByRef: TRUE if pvalue data is accessed by reference rather than copied.
continuing: TRUE if ATTC continues sending requests until complete.

When a response is received the client’s callback function is called with an

Copyright © 2009-2016 ARM. All rights reserved. Page 35

Confidential

Attribute Protocol API

ATTC_PREPARE_WRITE_RSP. If parameter continuing is TRUE, ATTC will automatically send
the next request until all responses are received or an error is received. If parameter continuing
is FALSE, the client application must call this function again and update the offset appropriately
to send the next response.

6.1.14 AttcExecuteWriteReq()
Initiate an attribute protocol Execute Write Request.

Syntax:
void AttcExecuteWriteReq(dmConnId_t connId, bool_t writeAll)

Where:

e connId: DM connection ID.
e writeAll: TRUE to write all queued writes, FALSE to cancel all queued writes.

When a response is received the client’s callback function is called with an
ATTC_EXECUTE_WRITE_RSP.

6.1.15 AttcCancelReq()
Cancel an attribute protocol request in progress.

Syntax:
void AttcCancelReq(dmConnId_t connId)

Where:

e connId: DM connection ID.

If the request is cancelled the client’s callback function is called with the event corresponding to
the request.

Copyright © 2009-2016 ARM. All rights reserved. Page 36

Confidential

Attribute Protocol API

7 Client Discovery Interface

The ATTC API contains a utility interface that simplifies common GATT client service and
characteristic discovery procedures. It also contains interfaces that simplify the configuration of
a service, for example reading or writing a set of characteristics or attributes after discovery is
complete.

An application using this interface is responsible for defining certain data structures, as shown
below in Figure 4.

Discovery
Control Block

Discovery Configuration

Characteristic Characteristic

Figure 4. Client discovery data structures defined by the application

The client discovery API uses a discovery control block that contains data used for the discovery
and configuration procedure. The control block points to a discovery characteristic list, a
configuration characteristic list, and a handle list.

The discovery characteristic list is a list of characteristics and descriptors that are to be
discovered. Each item in the list contains the UUID of the characteristic or descriptor and its
settings. As characteristics and descriptors are discovered the handle list is populated with their
respective handles.

The configuration characteristic list contains a list of characteristics and descriptors to read or
write. Each item in the list contains the value (if it is to be written) and the handle index of the
characteristic or descriptor in the handle list.

7.1 Constants and data types

7.1.1 Discovery Settings
These settings are used to define the features of a characteristic that are being discovered.

Copyright © 2009-2016 ARM. All rights reserved. Page 37

Confidential

Attribute Protocol API

Table 12 Client discovery type

Name Description
ATTC_SET_UUID_128 Set if the UUID is 128 bits in length.
ATTC_SET_REQUIRED Set if characteristic must be discovered.
ATTC_SET_DESCRIPTOR Set if this is a characteristic descriptor.

7.1.2 attcDiscChar _t
This data type is the structure for characteristic and descriptor discovery.

Table 13 attsDiscChar_t type

Type Name Description
uint8_t * pUuid Pointer to UUID.
uint8_t settings Characteristic discovery settings. See 7.1.1.

7.1.3 attcDiscCfg_t
This data type is the structure for characteristic and descriptor configuration.

Table 14 attsDiscCfg_t type

Type Name Description

uint8_t * pvalue Pointer to UUID.

uint8_t valuelen Default value length.

uint8_t hd1Idx Index of its handle in handle list.

7.1.4 attcDiscChb t
This data type is the discovery control block.

Table 15 attsDiscCb_t type

Type Name Description

attcDiscChar_t ** pCharList Characterisic list for discovery.

uintlé_t* pHd1List Characteristic handle list.

attcDiscCfg_t* pCfglList Characterisic list for configuration.

uint8_t charListlLen Characteristic and handle list length.
uint8_t cfglListlLen Configuration list length.

Copyright © 2009-2016 ARM. All rights reserved. Page 38

Confidential

Attribute Protocol API

7.2 Functions

7.2.1 AttcDiscService()

This utility function discovers the given service on a peer device. Function
AttcFindByTypeValueReq() is called to initiate the discovery procedure.

Syntax:

void AttcDiscService(dmConnId_t connId, attcDiscCh_t *pCb, uint8_t uuidLen,
uint8_t *pUuid)

Where:

connId: DM connection ID.

pCb: Pointer to discovery control block.
uuidLen: Length of service UUID (2 or 16).
pUuid: Pointer to service UUID.

7.2.2 AttcDiscServiceCmpl()

This utility function processes a service discovery result. It should be called when an
ATTC_FIND_BY_TYPE_VALUE_RSP callback event is received after service discovery is initiated
by calling AttcDiscService().

Syntax:
uint8_t AttcDiscServiceCmpl(attcDiscCb_t *pCb, attEvt_t *pMsg)

Where:

e pCh: Pointer to discovery control block.
e pMsg: ATT callback event message.

Returns ATT_SUCCESS if successful otherwise error.

7.2.3 AttcDiscCharStart()

This utility function starts characteristic and characteristic descriptor discovery for a service on a
peer device. The service must have been previously discovered by calling AttcDiscService()
and AttcDiscServiceCmp1().

Syntax:
void AttcDiscCharStart(dmConnId_t connId, attcDiscCb_t *pCh)
Where:

e connId: DM connection ID.

Copyright © 2009-2016 ARM. All rights reserved. Page 39

Confidential

Attribute Protocol API

e pCh: Pointer to discovery control block.

7.2.4 AttcDiscCharCmpl()

This utility function processes a characteristic discovery result. It should be called when an
ATTC_READ_BY_TYPE_RSP or ATTC_FIND_INFO_RSP callback event is received after
characteristic discovery is initiated by calling AttcDiscCharStart().

Syntax:
uint8_t AttcDiscCharCmpl(attcDiscCh_t *pCb, attEvt_t *pMsg)

Where:

e pCh: Pointer to discovery control block.
e pMsg: ATT callback event message.

Returns ATT_CONTINUING if successful and the discovery procedure is continuing. Returns
ATT_SUCCESS if the discovery procedure completed successfully. Returns
ATT_ERR_REQ_NOT_FOUND if discovery failed because a required characteristic was not found.
Otherwise the discovery procedure failed.

7.2.5 AttcDiscConfigStart()

This utility function starts characteristic configuration for characteristics on a peer device. The
characteristics must have been previously discovered by calling AttcDiscCharStart() and
AttcDiscCharCmpl().

Syntax:
uint8_t AttcDiscConfigStart(dmConnId_t connld, attcDiscCb_t *pCb)

Where:

e connId: DM connection ID.
e pCh: Pointer to discovery control block.

Returns ATT_CONTINUING if successful and configuration procedure is continuing. Returns
ATT_SUCCESS if nothing to configure.

7.2.6 AttcDiscConfigCmpl()

This utility function initiates the next characteristic configuration procedure. It should be called
when an ATTC_READ_RSP or ATTC_WRITE_RSP callback event is received after characteristic
configuration is initiated by calling AttcDiscConfigStart().

Syntax:
uint8_t AttcDiscConfigCmpl(dmConnId_t connId, attcDiscCb_t *pCb)

Where:

Copyright © 2009-2016 ARM. All rights reserved. Page 40

Confidential

Attribute Protocol API

e connId: DM connection ID.
e pCh: Pointer to discovery control block.

Returns ATT_CONTINUING if successful and configuration procedure is continuing. Returns
ATT_SUCCESS if configuration procedure completed successfully.

7.2.7 AttcDiscConfigResume()

This utility function resumes the characteristic configuration procedure. It can be called when an
ATTC_READ_RSP or ATTC_WRITE_RSP callback event is received with failure status to attempt the
read or write procedure again.

Syntax:
AttcDiscConfigResume(dmConnId_t connId, attcDiscCh_t *pCh)

Where:

e connId: DM connection ID.

e pCh: Pointer to discovery control block.

e Returns ATT_CONTINUING if successful and configuration procedure is continuing.
Returns ATT_SUCCESS if configuration procedure completed successfully.

Copyright © 2009-2016 ARM. All rights reserved. Page 41

Confidential

Attribute Protocol API

8 GATT Discovery Procedures

The Generic attribute profile (GATT) of the Bluetooth core specification defines how attribute
protocol operations are used to perform GATT procedures. The table below demonstrates how
the ATTC API is used to perform GATT discovery procedures.

Table 16 GATT procedures

GATT Procedure

ATTC API

Discover All Primary Services

AttcReadByGroupTypeReq ()
startHandle = 0x0001
EndHandle = OxXFFFF
uuidLen = 2

pUuid = pointer to
ATT UUID PRIMARY SERVICE

continuing = TRUE

Discover Primary Services by Service UUID

AttcFindByTypeValueReq()
startHandle = 0x0001

EndHandle = OxFFFF

uuidle = ATT UUID PRIMARY SERVICE
valuelen = 2 or 16

pValue = pointer to service UUID

continuing = TRUE

Find Included Services

AttcReadByTypeReq()

startHandle = service start handle
EndHandle = service end handle
uuidLen = 2

pUuid = pointer to
ATT UUID INCLUDE

Discover All Characteristics of a Service

AttcReadByTypeReq()

startHandle = service start handle
EndHandle = service end handle
uuidLen = 2

pUuid = pointer to
ATT UUID CHARACTERISTIC

continuing = TRUE

Discover Characteristics by UUID

AttcReadByTypeReq ()

startHandle = service start handle

Copyright © 2009-2016 ARM. All rights reserved.

Page 42

Confidential

Attribute Protocol API

EndHandle = service end handle
uuidLen = 2

pUuid = pointer to
ATT UUID CHARACTERISTIC

continuing = TRUE

Discover All Characteristic Descriptors

AttcFindInfoReq()

startHandle = characteristic wvalue
handle + 1

EndHandle = characteristic end
handle

continuing = TRUE

Copyright © 2009-2016 ARM. All rights reserved.

Page 43

Confidential

Attribute Protocol API

9 Scenarios

This section describes typical scenarios that use the API.

9.1 Server operations

Figure 5 shows an example server operation.

First, a connection is established with an attribute protocol client on a peer device. The peer
device sends an attribute protocol read request. In this example, the read request is handled
internally by the stack and no interaction is required from the application.

Next, the peer device sends a write request. In this example, the attribute being written is
configured to execute a write callback function. The callback executes and the application
performs whatever operation is necessary for the attribute. Upon return of the callback the stack
sends a write response packet.

Next, the application sends a handle value notification to the peer device by calling
AttsHandleValueInd(). The stack sends a handle value indication packet.

When the stack receives a handle value confirmation packet from the peer it executes the
application's ATT callback with event ATTS_HANDLE_VALUE_CNF.

Application Stack Peer Device
l l l

Connection Established

Read Request Packet

Read Response Packet

Write Request Packet

attsWriteCback() <

Write Response Packet

AttsHandleValuelnd()

Handle Value Indication Packet

\ 4

Handle Value Confirmation Packet

ATTS_HANDLE_VALUE_CNF

Copyright © 2009-2016 ARM. All rights reserved. Page 44

Confidential

Attribute Protocol API

Figure 5. Server operations

9.2 Client operations

Figure 6 shows some example client operations.

1. First, a connection is established with an attribute protocol server on a peer device.

a. The application initiates a request by calling AttcReadByGroupTypeReq() with
the continuing parameter set to TRUE.

b. The client sends an attribute protocol read by group type request, receives a
response and executes the ATT callback with event
ATTC_READ_BY_GROUP_TYPE_RSP. Since the read by group type procedure is not
complete the client automatically sends another read by group type request packet
to continue the procedure.

c. When the procedure is complete the ATT callback is executed with event
ATTC_READ_BY_GROUP_TYPE_RSP and the continuing parameter set to FALSE.

2. Next the application sends another request by calling AttcReadByTypeReq().

a. The stack sends a read by type request packet, receives a response, and executes
the ATT callback with event ATTC_READ_BY_TYPE_RSP.

b. In this example the procedure is complete in the first packet transaction and the
continuing parameter is set to FALSE.

3. Finally, the application writes a attribute by calling AttcWriteCmd().

a. The stack sends a write command packet. This packet does not have a
corresponding response packet.

b. When the stack has sent the packet it executes the ATT callback with event
ATTC_WRITE_CMD_RSP.

Copyright © 2009-2016 ARM. All rights reserved. Page 45

Confidential

Attribute Protocol API

Application Stack Peer Device

Connection Established

AttcReadByGroupTypeReq()
continuing=TRUE

> Read By Group Type Request Packet

ATTC_READ_BY_GROUP_TYPE_RSP Read By Group Type Response Packet
continuing=TRUE

»
>

Read By Group Type Request Packet

ATTC_READ_BY_GROUP_TYPE_RSP Read By Group Type Response Packet
continuing=FALSE

A

AttcReadByTypeReq()
continuing=TRUE

\4

Read By Type Request Packet

ATTC_READ_BY_TYPE_RSP Read By Type Response Packet
continuing=FALSE b

\ 4

AttcWriteCmd()

Write Command Packet

v

\ 4

ATTC_WRITE_CMD_RSP

A

Figure 6. Client operations

9.3 Client prepare and execute write

Figure 7 shows an example prepare and execute write procedure.

1. The application calls AttcPreparewriteReq() to write an attribute value.

2. The stack sends prepare write request packets until all the data has been sent to the peer
device.

3. The ATT callback is executed with event ATTC_PREPARE_WRITE_RSP each time a
response packet is received.

4. When callback event parameter continuing is set to FALSE, the procedure is complete.

5. Next the application calls AttcExecuteWriteReq() to execute the write procedure in the
peer device's attribute server.

6. The stack sends and execute write request packet.

7. When it receives a response it executes the ATT callback with event
ATTC_EXECUTE_WRITE_RSP.

Copyright © 2009-2016 ARM. All rights reserved. Page 46

Confidential

Attribute Protocol API

Application Stack Peer Device
l l l

Connection Established

AttcPrepareWriteReq ()
continuing=TRUE

Prepare Write Request Packet

ATTC_PREPARE_WRITE_RSP Prepare Write Response Packet
continuing=TRUE

\ 4

Prepare Write Request Packet

\ 4

ATTC_PREPARE_WRITE_RSP Prepare Write Response Packet

continuing=FALSE

AttcExecuteWriteReq()
writeAll=TRUE

A\ 4

Execute Write Request Packet

\ 4

Execute Write Response Packet
ATTC_EXECUTE_WRITE_RSP

Figure 7. Client prepare and execute write

9.4 Client discovery and configuration

Figure 8 shows and example of discovery and configuration using the ATT client discovery API.

1. First, service discovery is initiated by calling AttcDiscService() with the UUID of the
service to be discovered.

2. The ATT callback is executed with event ATTC_FIND_BY_TYPE_VALUE_RSP containing
discovery results.

3. The callback message is passed to function AttcDiscServiceCmp1(), which returns
ATT_SUCCESS indicating that service discovery completed successfully.

4. Then the application proceeds with characteristic discovery by calling
AttcDiscCharStart().

5. The ATT callback is executed with event ATTC_READ_BY_TYPE_RSP containing
characteristic discovery results.

6. The callback message is passed to function AttcDiscCharCmp1(), which returns
ATT_CONTINUING indicating that characteristic discovery is continuing. This procedure
repeats until AttcDiscCharCmp1() returns ATT_SUCCESS indicating that characteristic
discovery completed successfully.

7. Then the application proceeds with characteristic configuration by calling

Copyright © 2009-2016 ARM. All rights reserved. Page 47

Confidential

Attribute Protocol API

AttcDiscConfigStart(). A characteristic read or write is performed according to the
contents of the configuration characteristic list, and the ATT callback is executed.

8. The callback message is passed to function AttcDiscConfigCmp1(), which returns
ATT_CONTINUING indicating that configuration is not complete. The procedure repeats
until AttcDiscConfigCmp1() returns ATT_SUCCESS.

Application Stack
I l

Connection Established

AttcDiscService()
ATTC_FIND_BY_TYPE_VALUE_RSP g

AttcDiscServiceCmpl()
returns ATT_SUCCESS

AttcDiscCharStart()

ATTC_READ_BY_TYPE_RSP

AttcDiscCharCmpl()
returns ATT_CONTINUING

ATTC_READ BY_TYPE_RSP

AttcDiscCharCmpl()
returns ATT_CONTINUING

ATTC_READ_BY_TYPE_RSP

AttcDiscCharCmpl()
returns ATT_SUCCESS

AttcDiscConfigStart()
ATTC_READ_RSP

AttcDiscConfigCmpl()
returns ATT_CONTINUING

ATTC_WRITE_RSP

AttcDiscServiceCmpl()
returns ATT_SUCCESS

Figure 8. Client discovery and configuration procedures

Copyright © 2009-2016 ARM. All rights reserved. Page 48

Confidential

