ARM® Cordio Profiles

ARM-EPM-115885 1.0

Sample App User’s Guide

Confidential

ARM

Copyright © 2011-2016 ARM. All rights reserved. Page

Confidential

Sample App

ARM® Cordio Sample Application

User’s Guide
Copyright © 2011-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change

30 September 2015 - Confidential gérzs;Wwentrlc release for 1.1 as 2012-
1 March 2016 A Confidential First ARM release for 1.1

24 August 2016 A Confidential AUSPEX # / Added new sample apps

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any
form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to
any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the
information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology
or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or
creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for
publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this
document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or
understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to
create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without
notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version
of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.
Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2011-2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

Copyright © 2011-2016 ARM. All rights reserved. Page 2

Confidential

Sample App

110 Fulbourn Road, Cambridge, England CB1 9NJ

LES-PRE-20348

Confidentiality Status

This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with
the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address
http://www.arm.com

Copyright © 2011-2016 ARM. All rights reserved. Page 3

Confidential

Contents

ARM® Cordio Sample Application

1

Preface

1.1 About this book
1.1.1 Using this book
1.1.2Terms and abbreviations
1.1.3 Conventions
1.1.4 Additional reading

1.2 Feedback

1.2.1 Feedback on content

Introduction

2.1 Overview

Sample Application Operation
3.1 cycling
3.2 datc
3.3 dats
3.4 fit
3.5 gluc
3.6 medc
3.6.1 Compile Options
3.7 meds
3.7.1 Compile Options
3.8 tag
3.9 watch
3.10 keyboard

3.11 mouse

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

Sample Application

Page 4

c© 0 0 o

10
10
10

11
11

13
13
13
13
14
14
14
15
16
17
18
19
19

20

Sample Application

3.12 remote 20
3.13 sensor 21
3.14 uribeacon 21
Software Design 22
4.1 Software System 22
4.2 Sample Application Design 22
Sample Application Code Walkthrough 23
5.1 Configurable Parameters 23
5.1.1 Slave Parameters 23
5.1.2 Security Parameters 23
5.1.3 Connection Update Parameters 24
5.1.4HID Parameters 24
5.2 Advertising Data 26
5.3 ATT Client Discovery Data 27
5.4 ATT Client Data 29
5.5 ATT Server Data 29
5.6 Protocol Stack Callbacks 30
5.6.1 DM Callback 30
5.6.2 ATT Callback 30
5.6.3ATT CCC Callback 30
5.7 Event Handler Action Functions 30
5.7.1tagClose 31
5.7.2tagSetup 31
5.8 Button Handler Callback 31
5.9 Discovery Callback 31
5.10 Event Handler Processing Function 32
5.11 Application Initialization Function 32
5.12 Application Event Handler Function 32
Copyright ® 2011-2016 ARM. All rights reserved. Page 5

Confidential

Sample Application

5.13 Application Start Function 32
A. Revisions Error! Bookmark not defined.
Copyright © 2011-2016 ARM. All rights reserved. Page 6

Confidential

Sample Application

1 Preface

This preface introduces the Cordio Sample App Users Guide.

1.1 About this book

This book describes the ARM Cordio Bluetooth low energy sample applications. It provides example
source code for products such as a proximity keyfob, health sensor, and watch.

1.1.1 Using this book
This book is organized into the following chapters:

e Introduction

Read this for an overview of the sample applications
e Sample Application Operation

Read this for a description of how the sample applications interact with the user.
e Software Design

Read this for a description of the architecture of the sample applications.

e Sample Application Code Walkthrough
Read this for a detailed description of how a sample application works.

e Revisions
Read this chapter for descriptions of the changes between document versions.

1.1.2 Terms and abbreviations
For a list of ARM terms, see the ARM glossary.

Terms specific to the Cordio software are listed below:

Term Description
ACL Asynchronous Connectionless data packet
AD Advertising Data
ARQ Automatic Repeat reQuest
ATT Attribute Protocol, also attribute protocol software subsystem
ATTC Attribute Protocol Client software subsystem
ATTS Attribute Protocol Server software subsystem
CCCorCCCD Client Characteristic Configuration Descriptor
CID Connection Identifier
CSRK Connection Signature Resolving Key
DM Device Manager software subsystem
GAP Generic Access Profile
GATT Generic Attribute Profile
HCI Host Controller Interface
IRK Identity Resolving Key
JT Just In Time
Copyright © 2011-2016 ARM. All rights reserved. Page 8

Confidential

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

Sample Application

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

0O0B Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem
SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.

1.1.3 Conventions

The following table describes the typographical conventions:

Style

Italic

bold

MONOSPACE

MONOSPACE

monospace italic

monospace bold

<and>

SMALL CAPITALS

Typographical conventions
Purpose

Introduces special terminology, denotes cross-references, and
citations.

Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

Denotes language keywords when used outside example code.

Encloses replaceable terms for assembler syntax where they
appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Used in body text for a few terms that have specific technical
meanings, that are defined in the ARM® Glossary. For example,

Copyright © 2011-2016 ARM. All rights reserved. Page 9

Confidential

Sample Application

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,
and UNPREDICTABLE.

1.1.4 Additional reading
This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.
Other publications
This section lists relevant documents published by third parties:

¢ Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

1.2 Feedback
ARM welcomes feedback on this product and its documentation.

1.2.1 Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

The title.

The number, ARM-EPM-115153.

The page numbers to which your comments apply.
A concise explanation of your comments.

el N S

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the
quality of the represented document when used with any other PDF reader.

Copyright © 2011-2016 ARM. All rights reserved. Page 10

Confidential

http://infocenter.arm.com/

Sample Application

2 Introduction

Cordio’s Bluetooth low energy sample applications provide example source code for products such as a
proximity keyfob, health sensor, and watch.

2.1 Overview

Cordio’s sample applications are designed with a product-oriented focus, with each application
supporting one or more Bluetooth LE profile. The table below summarizes the different sample
applications with their supported profiles and device roles.

Table 1: Sample applications

Application Description Supported Profiles Device Role
Name
cycling Cycling sensor Cycling Power Profile Slave

Cycling Speed and Cadence
Profile

Battery Service

datc Proprietary data client Proprietary Profile Master
dats Proprietary data server Proprietary Profile Slave
fit Fitness sensor Heart Rate Profile Slave

Runners Speed and Cadence
Profile

Battery Service

gluc Glucose sensor Glucose Profile Slave

medc Health data collector Blood Pressure Profile Master
Glucose Profile
Heart Rate Profile
Weight Scale Profile
Health Thermometer Profile

Pulse Oximeter Profile

meds Health sensor Blood Pressure Profile Slave
Weight Scale Profile
Health Thermometer Profile

Pulse Oximeter Profile

tag Proximity tag Find Me Profile Slave
Proximity Profile
watch Watch accessory with message Alert Notification Profile Slave
alerts Phone Alert Status Profile
Time Profile
keyboard HID Computer keyboards HID Service Slave

Battery Service

Copyright © 2011-2016 ARM. All rights reserved. Page 11

Confidential

Sample Application

mouse HID Computer mice HID Service Slave
Battery Service

remote HID Remote controls HID Service Slave
Battery Service

sensor Proprietary sensor Proprietary Profile Slave

uribeacon Google URIbeacon Proprietary Profile Slave

Note: The applications and profiles listed above are not necessarily included in all customer releases;
the release you receive will only contain the applications for the profiles you have licensed.

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

Page 12

Sample Application

3 Sample Application Operation

The sample applications are designed to interact with the user via buttons and to provide user feedback
via LEDs, sounds, or other mechanisms depending on the capabilities of the target hardware platform.

The applications use the following button press durations:

Table 2: Button durations

Press Duration Description

Short Press Button pressed for less than 1.6 seconds.

Medium Press Button pressed for greater than 1.6 seconds and less than 3.2
seconds.

Long Press Button pressed for greater than 3.2 seconds and less than 4.8
seconds.

Extra Long Press Button pressed for greater than 4.8 seconds.

3.1 cycling

The cyc1ing application implements a cycling power sensor and cycling speed and cadence sensor.
When the application starts it will begin advertising. The application advertises continuously when not
connected.

The cyc1ing application does not use any button presses. When a peer device connects and enables
sensor measurements the application will start sending sensor data.

3.2 datc

The datc application implements the master role of a proprietary data transfer application. It has an
auto connect feature, where it scans for and then automatically connects to a matching proprietary data
transfer slave application. Once connected, the application can send and receive simple data messages.

Table 3: datc button operation

Button Press Description

When disconnected

Button 1 Short Initiate auto connect, or cancel auto connect if already initiated.

Button 1 Long Clear bonded device information.

When connected

Button 1 Short Send data packet.

Button 1 Long Disconnect.

3.3 dats

The dats application implements the slave role of a proprietary data transfer application. When the
application starts it will begin advertising. The application advertises continuously when not

Copyright © 2011-2016 ARM. All rights reserved. Page 13

Confidential

connected.

Sample Application

The dats application does not use any button presses. When it receives a data message from the peer
device it will automatically send a fixed data message back.

3.4 fit

The f1it application implements a heart rate profile sensor and runners speed and cadence sensor.
When the application starts it will advertise for 60 seconds. A button press is used to restart advertising

if it has stopped.

Table 4: fit button operation

Button Press

Description

When disconnected

Button 1 Short

Restart advertising.

Button 1 Medium

Enter discoverable and bondable mode and start advertising.

Button 1 Long

Clear bonded device information and then start advertising.

When connected

Button 1 Short

Increment simulated heart rate.

Button 1 Long

Disconnect.

Button 2 Short

Decrement simulated heart rate.

3.5 gluc

The gluc application implements a glucose profile sensor. When the application starts it will advertise
for 60 seconds. A button press is used to restart advertising if it has stopped.

Table 5: gluc buton operation

Button Press

Description

When disconnected

Button 1 Short

Restart advertising.

Button 1 Medium

Enter discoverable and bondable mode and start advertising.

Button 1 Long

Clear bonded device information and then start advertising.

When connected

Button 1 Long

Disconnect.

3.6 medc

The medc application implements the collector role of several different health profiles.

Copyright © 2011-2016 ARM. All rights reserved.

Page 14

Confidential

Sample Application

The selected profile is configured at either run time or compile time.

Note: Although the application supports multiple profiles it does not support simultaneous operation of
multiple profiles.

The medc application has an auto connect feature. It scans for and then automatically connects to a
matching profile.

3.6.1 Compile Options
The following compile options can be configured in medc_main.c.

Table 6: medc_main.c compile options

Name Description

MEDC_HRP_INCLUDED TRUE if heart rate profile included.
MEDC_BLP_INCLUDED TRUE if blood pressure profile included.
MEDC_GLP_INCLUDED TRUE if glucose profile included.
MEDC_WSP_INCLUDED TRUE if weight scale profile included.
MEDC_HTP_INCLUDED TRUE if health thermometer profile included.
MEDC_PLX_INCLUDED TRUE if pulse oximeter profile included.
MEDC_PROFILE Default profile to use.

The values for macro MEDC_PROFILE are as follows:

Table 7: MEDC_PROFILE

Name Description
MEDC_ID_HRP Heart rate profile.
MEDC_ID_BLP Blood pressure profile.
MEDC_ID_GLP Glucose profile.
MEDC_ID_WSP Weight scale profile.
MEDC_ID_HTP Health thermometer profile.
MEDC_ID_PLX Pulse oximeter profile.

Table 8: All profiles default button operation

Button Press Description

When disconnected

Button 1 Short Initiate auto connect, or cancel auto connect if already initiated.

Copyright © 2011-2016 ARM. All rights reserved. Page 15

Confidential

3.7 meds

Sample Application

Button 1 Long

Clear bonded device information.

When connected

Button 1 Long

Disconnect.

Table 9: Glucose Profile button operation

Button Press

Description

When connected

Button 1 Short

Report all records.

Button 1 Medium

Report records greater than sequence number.

Button 2 Short

Report number of records.

Button 2 Medium

Report number of records greater than sequence number.

Button 2 Long

Abort.

Button 2 Extra Long

Delete all records.

Table 10: Pulse Oximeter Profile button operation

Button Press

Description

When connected

Button 1 Medium

Close connection

Button 2 Short

Delete all records.

Button 2 Medium

Report stored records

Button 2 Long

Report number of stored records

Button 2 Extra Long

Abort operations

The meds application implements the sensor role of several different health profiles. The selected
profile is configured at run time or compile time.

Note: Although the application supports multiple profiles it does not support simultaneous operation of
multiple profiles.

When the application starts it will advertise for 60 seconds. A button press is used to restart advertising
if it has stopped.

The application uses simulated sensor values for its sensor data.

Copyright © 2011-2016 ARM. All rights reserved.

Page 16

Confidential

3.7.1 Compile Options

Sample Application

The following compile options can be configured in meds_main.c.

Table 11: meds_main.c compile options

Name

Description

MEDS_BLP_INCLUDED

TRUE if blood pressure profile included.

MEDS_WSP_INCLUDED

TRUE if weight scale profile included.

MEDS_HTP_INCLUDED

TRUE if health thermometer profile included.

MEDS_PLX_INCLUDED

TRUE if pulse oximeter profile included.

MEDS_PROFILE

Default profile to use.

The values for macro MEDS_PROFILE are as follows:

Table 12: MEDS_PROFILE

Name Description
MEDS_ID_BLP Blood pressure profile.
MEDS_ID_WSP Weight scale profile.
MEDS_ID_HTP Health thermometer profile.
MEDS_ID_PLX Pulse oximeter profile.

The values for the profiles are listed in the tables below:

Table 13: All profiles default button operation

Button Press

Description

When disconnected

Button 1 Short

Restart advertising.

Button 1 Medium

Enter discoverable and bondable mode and start advertising.

Button 1 Long

Clear bonded device information and then start advertising.

When connected

Button 1 Long

Disconnect.

Table 14: Blood Pressure Profile button operation

Button Press

Description

When connected

Button 1 Short

Press to start a measurement. If already started, press again to complete

Copyright © 2011-2016 ARM. All rights reserved.

Page 17

Confidential

3.8 tag

Sample Application

measurement and send final measurement value.

Table 15: Weight scale profile button operation

Button Press

Description

When connected

Button 1 Short

Send final measurement value.

Table 16: Health Thermometer Profile button operation

Button Press

Description

When connected

Button 1 Short

Press to start a measurement. If already started, press again to complete
measurement and send final measurement value.

Button 2 Short

Set units to Fahrenheit.

Button 2 Medium

Set units to Celsius.

Table 17: Pulse Oximeter Profile button operation

Button Press

Description

When connected

Button 1 Short

Press to start a measurement. If already started, press again to complete
measurement and send final measurement value.

Button 2 Short

Send a measurement.

Button 2 Medium

Delete all records

The tag application implements the proximity and find me profiles.

When the application starts, it begins advertising. The application advertises continuously when not

connected.
Table 18: Tag button operation
Button Press Description
When disconnected
Button 1 Short Restart advertising.
Copyright © 2011-2016 ARM. All rights reserved. Page 18

Confidential

Sample Application

Button 1 Medium

Enter discoverable and bondable mode and start advertising.

Button 1 Long

Clear bonded device information and then start advertising.

When connected

Button 1 Short

Send immediate alert.

Button 1 Medium

Stop immediate alert.

Button 1 Long

Disconnect.

3.9 watch

The watch application implements several profiles applicable to a watch. When the application starts,
it begins advertising. The application advertises continuously when not connected.

Table 19: Watch button operation

Button Press

Description

When disconnected

Button 1 Short

Restart advertising.

Button 1 Medium

Enter discoverable and bondable mode and start advertising.

Button 1 Long

Clear bonded device information then start advertising.

When connected

Button 1 Short

Mute ringer once.

Button 1 Medium

Toggle between silencing ringer and enabling ringer.

Button 1 Long

Disconnect.

3.10 keyboard

The keyboard application implements several profiles applicable to HID Keyboard.

When the application starts, it begins advertising. The application advertises continuously when not

connected.

A full keyboard cannot be implemented with two buttons. Therefore, the keyboard application
demonstrates the implementation of a HID keyboard that only supports the Up Arrow and Down Arrow

keys.

Table 20: Keyboard button operation

Button Press

Description

When connected

Button 1 Short

Transmit Up Arrow keypress.

Button 2 Short

Transmit Down Arrow keypress.

Copyright © 2011-2016 ARM. All rights reserved.

Page 19

Confidential

Sample Application

All other button events Transmit None keypress.

3.11 mouse
The mouse application implements several profiles applicable to HID Computer Mice.

When the application starts, it begins advertising. The application advertises continuously when not
connected.

A full mouse cannot be implemented with two buttons. Therefore, the mouse application demonstrates
the implementation of left button and right button.

Table 21:Mouse button operation

Button Press Description

When connected

Button 1 Short Transmit Left Mouse Button.

Button 2 Short Transmit Right Mouse Button.

All other button events Transmit No Button event.
3.12 remote

The remote application implements several profiles applicable to a HID Consumer Remote Control.

When the application starts, it begins advertising. The application advertises continuously when not
connected.

A full remote control cannot be implemented with two buttons. Therefore, the remote application
demonstrates the implementation of a play button and a stop button.

Table 22: Remote button operation

Button Press Description

When connected

Button 1 Short Transmit Play.
Button 2 Short Transmit Stop.
All other button events Transmit No Button event.
Copyright © 2011-2016 ARM. All rights reserved. Page 20

Confidential

Sample Application

3.13 sensor

The sensor application implements a proprietary sensor profile. When a peer device connects and
enables sensor measurements the application will start sending sensor data.

When the application starts, it begins advertising for 30 seconds. Advertising can be restarted with a
button press.

Table 23: Sensor button operation

Button Press Description

When not connected

Button 1 Short Restart advertising.

3.14 uribeacon

The uribeacon application implements Google’s proprietary URIbeacon profile.

When the application starts, it begins advertising for 30 seconds. Advertising can be restarted with a
button press.

Table 24: uribeacon button operation

Button Press Description

When not connected

Button 1 Short Restart advertising.

Copyright © 2011-2016 ARM. All rights reserved. Page 21
Confidential

Sample Application

4 Software Design

This section describes the architecture of the sample applications.

4.1 Software System
The sample applications are part of the Cordio Profiles software system, as shown in Figure 1.

The sample applications interface to the Profiles and Services, which provide interoperable components
designed to Bluetooth specification requirements.

The sample applications also interface to the App Framework, which provides connection and device
management services, user interface services, a device database, and a hardware sensor interface.

Sample Applications

Profiles and Services

App Framework

Figure 1. The Cordio Profiles software system

For a complete description see the App Framework API Reference Manual and Profiles and Services
API Reference Manual.

4.2 Sample Application Design
All sample applications follow the same basic design model, and consist of the following:

e Configurable parameters: Data structures that control the behavior of advertising, security,
and connections.

e Attribute protocol (ATT) data: Data structures and constants that configure service discovery
and manage client characteristic configuration descriptor (CCCD) data for the ATT client and
server.

e Protocol stack and App Framework callbacks: These functions interface the Cordio protocol
stack and App Framework to the sample application event handler.

e Button press handler: This function controls the application behavior on button press events.
For example, start advertising on a short button press.

e Event handler and event processing functions: These functions handle events from the
protocol stack and perform actions specific to the sample application. For example, generate a
Ul alert when the connection is closed.

Copyright © 2011-2016 ARM. All rights reserved. Page 22

Confidential

Sample Application

5 Sample Application Code Walkthrough

This code walkthrough provides a detailed description of how a sample application works. The
example code in this walkthrough is taken from the tag sample application in file tag_main.c.

5.1 Configurable Parameters

This section of the code contains configurable parameters for slave, security, and connection update.

5.1.1 Slave Parameters

The slave parameters configuration structure appadvctg t configures the interval and duration of
advertising. The structure contains three interval-duration pairs.

A code example is shown below:

/*! configurable parameters for slave */
static const appAdvCfg t tagSlaveCfg =
{
{15000, 45000, 0}, /*! Advertising durations in ms */
{ 56, 640, 1824} /*! Advertising intervals in 0.625 ms units */
}i

Note: The advertising interval is in 0.625ms units. For example:
56 * 0.625ms = 35ms

If the advertising duration is zero, then advertising will not time out and will continue until a
connection is established or advertising is stopped by the application.

This example creates the following advertising behavior:

e Advertise with a 35ms interval for 15 seconds.
e Advertise with a 400ms interval for 45 seconds.
e Adbvertise continuously with a 1140ms interval.

5.1.2 Security Parameters

The security parameters structure appseccfg t configures the security options for the application. A
code example is shown below:

/*! configurable parameters for security */
static const appSecCfg t tagSecCfg =
{
DM AUTH BOND FLAG, /*! Authentication and bonding flags */

0, /*! Initiator key distribution flags */
DM KEY DIST LTK, /*! Responder key distribution flags */
FALSE, /*! TRUE if Out-of-band pairing data is present */
TRUE /*! TRUE to initiate security upon connection */
i
Copyright © 2011-2016 ARM. All rights reserved. Page 23

Confidential

Sample Application

This example creates the following security behavior:

Request bonding and use just works pairing without a PIN.

Only distribute the minimum required keys.

Out-of-band data (used instead of a PIN for pairing) is not present.
Initiate a request for security upon connection.

eI S

5.1.3 Connection Update Parameters

The structure appUpdateCfg_t configures the connection update parameters. These parameters are
used after a connection is established to reconfigure a connection for low power and/or low latency.

The appUpdateCfg_t structure is currently only used by slave devices.

A code example is shown below:

/*! configurable parameters for connection parameter update */
static const appUpdateCfg t tagUpdateCfg =
{

6000, /*! Connection idle period in ms before attempting

connection parameter update; set to zero to disable */

640, /*! Minimum connection interval in 1.25ms units */
800, /*! Maximum connection interval in 1.25ms units */
0, /*! Connection latency */

600, /*! Supervision timeout in 10ms units */

5 /*! Number of update attempts before giving up */

}i

Note: The connection interval is in 1.25ms units. For example, 640 * 1.25 = 800ms.
This example creates the following behavior:

1. Request a connection parameter update after the connection has been idle for at least 6 seconds.
The connection is considered idle when there is no pending security procedure or ATT
discovery procedure.

2. Request a connection interval between 800 and 1000ms.

3. Request a connection latency of zero, meaning that the slave and master have equal connection
intervals.

4, Set the supervision timeout to 6 seconds. If the connection is lost for 6 seconds the devices will
disconnect.

5. Attempt a connection parameter update 5 times. The master device may reject a connection
parameter update if it is busy. If this occurs the connection parameter update will be attempted
again.

5.1.4 HID Parameters

Applications using the HID service (for example, keyboard, mouse, and remote) must register a
hidConfig_t with the HID profile.

A code example is shown below:

/*! HID Profile Configuration */

static const hidConfig t mouseHidConfig =

Copyright © 2011-2016 ARM. All rights reserved. Page 24

Confidential

HID DEVICE TYPE MOUSE,

(uint8 t*) mouseReportMap,

sizeof (mouseReportMap),

(hidReportIdMap t*) mouseReportIdSet,

sizeof (mouseReportIdSet) /sizeof (hidReportIdMap t),
NULL,

NULL,

mouseInfoCback

}i

HidInit (&mouseHidConfigqg) ;

This example creates the following behavior:

/*
/*
/*
/*
/*
/*
/*
/*

Sample Application

Type of HID device */

Report Map */

Size of report map in bytes */
Report ID to Attribute Handle map */
ID to Handle map size (bytes) */
Output Report Callback */

Feature Report Callback */

Info Callback */

1. A HID Mouse device, defined by the HID_DEVICE_TYPE_MOUSE. HID mice support Boot

Mouse HID Reports.

Alternative device types are HID_DEVICE_TYPE_KEYBOARD which support the Boot Keyboard
Reports, and HID_DEVICE_TYPE_GENERIC which do not support the HID Boot Protocol Mode or

HID Boot Reports.

2. Registers a HID Report Map defined by the mouseReportMap structure shown below:

static const uint8 t mouseReportMapl[] =

{

0x05, 0x01, /* USAGE PAGE (Generic Desktop) */
0x09, 0x02, /* USAGE (Mouse) */

Oxal, 0x01, /* COLLECTION (Application) */
0x09, 0x01, /* USAGE (Pointer) */

Oxal, 0x00, /* COLLECTION (Physical) */
0x05, 0x09, /* USAGE PAGE (Button) */
0x19, 0x01, /* USAGE MINIMUM (Button 1) */
0x29, 0x03, /* USAGE MAXIMUM (Button 3) */
0x15, 0x00, /* LOGICAL MINIMUM (0) */
0x25, 0x01, /* LOGICAL MAXIMUM (1) */
0x95, 0x03, /* REPORT COUNT (3) */

0x75, 0x01, /* REPORT SIZE (1) */

0x81, 0x02, /* INPUT (Data,Var,Abs) */
0x95, 0x01, /* REPORT COUNT (1) */

0x75, 0x05, /* REPORT SIZE (5) */

0x81, 0x03, /* INPUT (Cnst,Var,Abs) */
0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */
0x09, 0x30, /* USAGE (X) */

0x09, 0x31, /* USAGE (Y) */

0x15, 0x81, /* LOGICAL MINIMUM (-127) */
0x25, 0x7f, /* LOGICAL MAXIMUM (127) */
0x75, 0x08, /* REPORT SIZE (8) */

0x95, 0x02, /* REPORT COUNT (2) */

0x81, 0xO06, /* INPUT (Data,Var,Rel) */

Copyright © 2011-2016 ARM. All rights reserved.

Confidential

Page 25

Sample Application

0xcO,
0xcO

The HID Report Map is a HID Report Descriptor for the HID device. A detailed description of
HID Report Descriptors can be found in the USB HID spec.

A map between the HID Report ID and the ATT attribute handle as specified by the code below:

static const hidReportIdMap t mouseReportIdSet[] =

{
/* type ID handle */
{HID REPORT TYPE INPUT, O, HIDM INPUT REPORT HDL}, /* Input Report */
{HID REPORT TYPE INPUT, HID BOOT ID, HIDM MOUSE BOOT IN HDL}, /* Boot Input Report */

3. An information callback that receives notification of HID Control Point and HID Protocol
Mode messages via the mouseInfoCback () function.
4. An application that does not receive HID feature or output reports. Applications wishing to

receive HID output or feature reports must provide callback functions to the outputCback or
featureCback parameters of the hidConfig_t structure.

5.2 Advertising Data

The advertising data and scan response data is configured via simple byte arrays. There can be separate
sets of advertising and scan response data for connectable and discoverable mode (as we’ll see later on

in Section 5.7.2).

The contents of advertising and scan response data follow a simple length-type-value format as defined
by the Bluetooth specification. The length byte contains the length of the type byte and value bytes that
follow. The type byte contains the advertising data type, or AD type, specifying a particular type of
data. The value bytes, if present, are set according to the AD type.

Example advertising and scan response data is shown below:

/*! advertising data, discoverable mode */
static const uint8 t tagAdvDataDisc[] =
{

/*! flags */

2, /*! length */
DM ADV_TYPE FLAGS, /*! AD type */
DM FLAG LE LIMITED DISC | /*! flags */

DM _FLAG LE BREDR NOT SUP,

/*! tx power */

2, /*! length */
DM _ADV_TYPE TX_ POWER, /*! AD type */
0, /*! tx power */

/*! device name */

Copyright © 2011-2016 ARM. All rights reserved. Page 26

Confidential

Sample Application

11, /*! length */
DM ADV_TYPE LOCAL NAME, /*! AD type */
e,
o,
v,

'd',

}i

/*! scan data, discoverable mode */

static const uint8 t tagScanDataDisc[] =

{
/*! service UUID list */
7, /*! length */
DM ADV_TYPE 16 UUID, /*! AD type */
UINT16 TO BYTES (ATT UUID LINK LOSS SERVICE),
UINT1 6_TO_BYTES (ATT_UUID_IMMEDIATE_ALERT_SERVICE) ’
UINT16 TO BYTES (ATT UUID TX POWER SERVICE)

The advertising data consists of three AD type fields:

1. Flags: The flags are set to limited discoverable mode.
2. TX power: The TX power is set to 0dBm.
3. Device name: The device name is set to cordio app.

The scan response data is set to the service UUID list. This contains a list of services supported by the
device. The list in this example contains the Link Loss Service, Immediate Alert Service, and TX
Power Service.

More information on AD types is in the Bluetooth 4.0 specification Volume 3, Part C, Chapter 11.

5.3 ATT Client Discovery Data

The ATT client discovery data is used for service discovery and to manage the client handle list
containing the handles of discovered characteristics and attributes.

The handle list is an integer array defined by the sample application. Handles are set in the list by App
Framework discovery functions used to find the characteristics and attributes of desired services on a
peer device. For bonded peer devices, the handle list is stored in the device database so it can be
restored on subsequent connections without performing discovery again.

In the following example, the ATT client discovery data is set up to discover the GATT Service and
Immediate Alert Service (IAS).

Copyright © 2011-2016 ARM. All rights reserved. Page 27

Confidential

Sample Application

/*! Discovery states: enumeration of services to be discovered */
enum
{

TAG DISC GATT SVC, /* GATT service */

TAG DISC IAS SVC, /* Immediate Alert service */

TAG DISC SVC MAX /* Discovery complete */

}i

/*! the Client handle list, tagCb.hdlList[], is set as follows:

——————————————————————————————— <- TAG DISC_GATT START

* | GATT svc changed handle |

K e

* | GATT svc changed ccc handle |

L et <- TAG DISC IAS START
* | IAS alert level handle |

K e

*/

/*! Start of each service's handles in the the handle list */

#define TAG DISC GATT START 0
#define TAG DISC IAS START (TAG _DISC GATT START + GATT HDL LIST LEN)
#define TAG DISC HDL LIST LEN (TAG _DISC_IAS START + FMPL IAS HDL LIST LEN)

/*! Pointers into handle list for each service's handles */
static uintl6 t *pTagGattHdlList = &tagCb.hdlList[TAG DISC GATT START];
static uintl6 t *pTaglasHdlList = &tagCb.hdlList[TAG DISC IAS START];

The discovery state enumeration is a list of the services to be discovered. These values are used in the
App Framework discovery callback (see Section 5.9).

Then some constants and pointers are defined for accessing the handle list, as illustrated in the figure
below.

hdIList[]

4 pTagGattHdIList
_ < pTaglasHdIList

TAG_DISC_GATT_START
=0

1
TAG_DISC_IAS_START =2

Figure 2. Example ATT client handle list and associated data.
In this example the handle list stores three handles: Two GATT handles and one IAS handle.

Constants Tac_pIsc_GATT START and TAG DISC IAS_ START are Set to the start index of the handles

Copyright © 2011-2016 ARM. All rights reserved. Page 28

Confidential

Sample Application

for their respective services in the handle list. The pointers pTagGattidiList and pTagIasHdlList
point to the start of the handles for their respective services in the handle list. These pointers are used
by the profile service discovery functions (for example Gattbiscover () and FmplTasDiscover ()) tO
access the handle list.

5.4 ATT Client Data

When service and characteristic discovery is complete, a profile typically requires that certain
characteristics are read or written to configure the profile and the services it uses. For example, client
characteristic configuration descriptors (CCCDs) are typically written to enable indications or
notifications for their respective characteristics.

The ATT client data consists of constants and data structures used to configure a list of discovered
characteristics. The data is used with the apppiscconfigure () function of the App Framework API.

The data structure of type attcbisccfg t contains of a list of characteristics to read or write. Each
entry in the list contains a value (if it is to be written), the value length, and the handle index of the
discovered attribute or characteristic. An example is shown below:

/* Default value for GATT ccc descriptor */
static const uint8 t tagGattScCccVal[] =
{UINT16 TO BYTES (ATT CLIENT CFG_INDICATE) };

/* List of characteristics to configure */
static const attcDiscCfg t tagDiscCfgList[] =
{
/* Write: GATT service changed ccc descriptor */
{tagGattScCccVval, sizeof (tagGattScCccVal),
(GATT SC CCC HDL IDX + TAG DISC GATT START) }
bi

/* Characteristic configuration list length */
#define TAG DISC CFG LIST LEN (sizeof (tagDiscCfglList) / sizeof (attcDiscCfg t))

In this example, the characteristic list has a single entry that contains data used to write the CCCD of
the GATT service changed characteristic. The value to be written will enable indications.

Note: The value is formatted as a little-endian byte array.

The handle index is setto (GATT sc_ccc HDL IDX + TAG DISC_GATT START). The value
GATT sc_ccc_HpL_1Dx IS the handle index of the CCCD discovered by the GATT profile (see
gatt_api.h). The value Tac pIsc cGaTT sTarrT is the start index of the GATT portion of the
applications handle list, as described in Section 5.3.

55 ATT Server Data

The ATT server data contains constants and data structures defining the client characteristic
configuration descriptors (CCCDs) used in the services supported by the device in its own server.

The data is used by the ATT server CCCD management service. The data consists of an enumeration

Copyright © 2011-2016 ARM. All rights reserved. Page 29

Confidential

Sample Application

of each CCCD in the ATT server and a table of settings for each CCCD. An example is shown below:

/*! enumeration of client characteristic configuration descriptors used in local ATT
server */

enum
{
TAG_GATT SC CCC_1IDX, /*! GATT service, service changed characteristic */
TAG _NUM CCC_IDX /*! Number of ccc's */

}i

/*! client characteristic configuration descriptors settings, indexed by ccc
enumeration */

static const attsCccSet t tagCccSet [TAG _NUM CCC IDX] =
{
/* cccd handle value range security level */
{GATT _SC CH_CCC_ HDL, ATT CLIENT CFG INDICATE, DM SEC LEVEL ENC}
}i

In this example the ATT server database contains a single CCCD for the GATT service changed
characteristic. The table of CCCD settings has a single entry, containing the handle of the CCCD, the
value range, and the security level required for an indication or notification to be sent for the
characteristic value associated with the CCCD. In this example the CCCD supports indications, and
encryption is required before an indication can be sent.

5.6 Protocol Stack Callbacks
The protocol stack callbacks interface the sample application to the Cordio protocol stack.

5.6.1 DM Callback

The DM callback function is executed when the stack has a device management event to send to the
application. The function simply copies the callback event parameters to a message and sends the
message to the sample application event handler.

5.6.2 ATT Callback

The ATT callback function is executed when the ATT protocol client or server has an event to send to
the application. The function simply copies the callback event parameters to a message and sends the
message to the sample application event handler.

5.6.3 ATT CCC Callback

The ATT CCC callback function is executed when a peer device writes a new value to a client
characteristic configuration descriptor in the ATT server. It is also executed on connection
establishment if the CCCD is initialized with a stored value from a previous connection.

The function first checks if this new CCCD value should be stored in the device database. If so, the
value is stored. Then it sends a message to the sample application event handler with the CCCD value.

5.7 Event Handler Action Functions

A sample application defines event handler actions functions when a particular event, such as
connection open or close, requires specific actions in the application. The following functions are
examples from the tag sample application.

Copyright © 2011-2016 ARM. All rights reserved. Page 30

Confidential

Sample Application

5.7.1 tagClose
This function performs an alert when the connection is closed.

5.7.2 tagSetup
This function is executed when the application is started after the stack is reset.

It sets up the advertising and scan response data, and then starts advertising:

/* set advertising and scan response data for discoverable mode */

AppAdvSetData (APP_ADV_DATA DISCOVERABLE, sizeof (tagAdvDataDisc),
(uint8 t *) tagAdvDataDisc);

AppAdvSetData (APP_SCAN DATA DISCOVERABLE, sizeof (tagScanDataDisc),
(uint8 t *) tagScanbataDisc);

/* set advertising and scan response data for connectable mode */
AppAdvSetData (APP_ADV_DATA CONNECTABLE, 0, NULL);
AppAdvSetData (APP_SCAN DATA CONNECTABLE, 0, NULL);

/* start advertising; automatically set connectable/discoverable

mode and bondable mode */

AppAdvStart (APP_MODE AUTO INIT);

Note: The advertising data is set to the constants described earlier in Section 5.1.4. Also note that the
advertising data is set differently for discoverable mode and connectable mode, and that the advertising
data is set to empty in connectable mode.

The device starts advertising by calling function appadvstart (). By using auto init mode, the
connectable/discoverable and bondable mode of the device is set automatically based on whether the
device has already bonded. If it has not bonded the device is set to discoverable and bondable mode. If
it has bonded the device is set to connectable and non-bondable mode.

5.8 Button Handler Callback

The button handler callback function is part of the App Framework’s user interface service. It is
executed by the App Framework when a button press occurs. The button press value identifies the
pressed button and the duration of the button press (short, medium, or long).

This function performs an action on a button press event specific to the sample application. The
application will typically perform different actions when connected vs. not connected. For example in
the tag application, an immediate alert is sent when a short button press occurs while connected.

5.9 Discovery Callback

This is the callback function for the App Framework discovery APl. The App Framework provides a
set of discovery APIs that simplify service and characteristic discovery as well as service configuration.
The App Framework executes the callback at appropriate times to trigger the application to perform a
discovery-related action. The status parameter to the function indicates the action to perform, or the
status result of a completed action.

Copyright © 2011-2016 ARM. All rights reserved. Page 31

Confidential

Sample Application

The status values and the associated action typically performed by the callback function are as follows:

1. APP_DISC_INIT: This status value is used when the connection is opened. The function must
call apppiscsetHdlList () and pass in a memory buffer for the App Framework to store the
handle list.

2. APP_DISC_START: This status value is used when discovery is started. The function should
initiate service discovery for the first service to be discovered, for example call
GattDiscover().

3. APP_DISC_CMPL and APP_DISC_FAILED: These status values are used when the previously-
initiated discovery procedure is complete. If there are more services to discover initiate
discovery for the next service. Otherwise, call AppDiscComplete (APP _DISC_cMPL) t0 notify
the App Framework that all discovery procedures are complete. If there is a configuration
procedure to perform initiate the configuration procedure by calling AppDiscConfigure ()
using the ATT client data as described in Section 5.4.

4, APP_DISC_CFG_START: This status value is used to start a configuration procedure. This status
value is used when all discovery procedures are complete but configuration is not complete. If
there is a configuration procedure to perform initiate the procedure. Otherwise, call
AppDiscComplete (APP DISC CFG cMPL) to notify the App Framework that all discovery
procedures are complete.

5. APP_DISC_CFG_CONN_START: This status value is used to start a connection setup configuration
procedure. This can be used when an application needs to read or write certain characteristics
of the peer device every time a connection is established. If applicable, call
AppDiscConfigure () to perform the configuration procedure.

6. APP_DISC_CFG_CMPL: This function is called when a configuration procedure is complete. Call
AppDiscComplete (APP_DISC CFG_cMPL) to notify the App Framework that all discovery
procedures are complete.

5.10 Event Handler Processing Function

This function decodes received DM or ATT events and then executes an action function to perform an
application-specific procedure. The sample application code also demonstrates how DM events can be
mapped to Ul events that are then passed to appuiaction () to perform a platform-specific Ul action,

for example blink an LED when a connection is established.

5.11 Application Initialization Function

The application initialization function is executed on system startup when the WSF event handlers for
the system are initialized. This function initializes App Framework configuration pointers and
initializes any used App Framework components that require initialization.

5.12 Application Event Handler Function

This is the application’s WSF event handler. It is executed by the WSF OS. Received messages are
passed to the appropriate App Framework components and then are passed to the application’s event
handler processing function.

5.13 Application Start Function

This is the function that ties everything together for the application:

Copyright © 2011-2016 ARM. All rights reserved. Page 32

Confidential

Sample Application

e This function is executed on system startup after WSF event handlers have been initialized.

e The function registers the application’s protocol stack callback functions and App Framework
callback functions.

e [t then initializes the services used in the local ATT server database.

e Finally, function pmpevreset () is called to reset the stack and Bluetooth LE controller and then
trigger the start of the application.

Copyright © 2011-2016 ARM. All rights reserved. Page 33

Confidential

Sample Application

6 Cordio BT4 Host

As of the r2p0-00bet release, sample applications are built for the Cordio BT4 evaluation boards.

6.1 Projects

The sample application projects can be found in
/cordio-bt4-host/projects/

Each sample application includes a keil and gcc (arm-gcc) project configured to build the SPF for drag
and drop programming, which gets loaded onto the evaluation board (BT4-GEN2-EVAL-01). For
more information on the Evaluation Boards see the Cordio BT4 Customer Evaluation and
Demonstration Kit User’s Guide.

6.2 Commands

Due to limitations on the evaluation board button presses and other commands are simulated through
the serial terminal. To execute the following commands connect to the evaluation board via Tera Term
or another terminal program and execute the commands listed in this section.

6.2.1 Serial Port Configuration
Parity: None

Data Bits: 8

Stop Bits: 1

HW Flow Control: None

BAUD: 115200

6.2.2 Simulate Key Press Command
Usage: btn <ID> <code>

ID 1,2

code s (short), m (medium), I (long), x (extra long)

6.2.3 Security Pin Code Command
Usage: pin <ConnID> <Pin Code>

ConnlID Connection ID

Pin Code Security Pin Code

Copyright © 2011-2016 ARM. All rights reserved. Page 34

Confidential

