
Copyright  2009-2016 ARM. All rights reserved. Page 1

Confidential

ARM® Cordio Stack

ARM-EPM-115876 1.0

Attribute Protocol API

Confidential

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 2

Confidential

ARM® Cordio Attribute Protocol API

Reference Manual
Copyright © 2009-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change

25 September 2015
-

Confidential
First Wicentric release for 1.5 as

document 2009-0010

1 March 2016 A Confidential First ARM release for 1.5

24 August 2016 A Confidential AUSPEX # / API Update

Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the information contained in this

document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any

form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to

any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the

information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology

or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or

creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for

publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this

document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,

SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE

DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or

understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,

HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS

DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this

document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,

directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to

create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without

notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this

document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This

document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version

of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or

elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.

Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2009-2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 3

Confidential

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status
This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with

the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 4

Confidential

Contents

ARM® Cordio Stack 1

1 Preface 8

1.1 About this book 8

1.1.1 Intended audience 8

1.1.2 Using this book 8

1.1.3 Terms and abbreviations 8

1.1.4 Conventions 10

1.1.5 Additional reading 10

1.2 Feedback 11

1.2.1 Feedback on content 11

2 Introduction 12

3 Main Interface 13

3.1 Constants and data types 13

3.1.1 Status 13

3.1.2 Operation 14

3.1.3 attCfg_t 15

3.2 Functions 15

3.2.1 AttRegister() 15

3.2.2 AttConnRegister() 16

3.2.3 AttGetMtu() 16

3.3 Callback interface 16

3.3.1 (*attCback_t)() 16

3.3.2 Callback events 16

3.3.3 attEvt_t 17

4 Server Interface 18

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 5

Confidential

4.1 Attribute server operation 18

4.2 Constants and data types 19

4.2.1 Attribute settings 19

4.2.2 Attribute security settings 19

4.2.3 Attribute UUID 20

4.2.4 Attribute value 20

4.2.5 Attribute handles 20

4.2.6 attsAttr_t 20

4.2.7 attsGroup_t 21

4.3 Functions 21

4.3.1 AttsInit() 21

4.3.2 AttsIndInit() 21

4.3.3 AttsSignInit() 22

4.3.4 AttsAuthorRegister() 22

4.3.5 AttsAddGroup() 22

4.3.6 AttsRemoveGroup() 22

4.3.7 AttsSetAttr() 22

4.3.8 AttsGetAttr() 23

4.3.9 AttsHandleValueInd() 23

4.3.10 AttsHandleValueNtf() 23

4.3.11 AttsSetCsrk() 24

4.3.12 AttsSetSignCounter() 24

4.3.13 AttsGetSignCounter() 24

4.4 Callback interface 25

4.4.1 (*attsReadCback_t)() 25

4.4.2 (*attsWriteCback_t)() 25

4.4.3 (*attsAuthorCback_t)() 26

5 Server Client Characteristic Configuration Interface 27

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 6

Confidential

5.1 Constants and data types 28

5.1.1 attsCccSet_t 28

5.2 Functions 28

5.2.1 AttsCccRegister() 28

5.2.2 AttsCccInitTable() 28

5.2.3 AttsCccClearTable() 29

5.2.4 AttsCccGet() 29

5.2.5 AttsCccSet() 29

5.2.6 AttsCccEnabled() 29

5.3 Callback Interface 30

5.3.1 attsCccEvt_t 30

5.3.2 (*attsCccCback_t)() 30

6 Client interface 31

6.1 Functions 31

6.1.1 AttcInit() 31

6.1.2 AttcSignInit() 31

6.1.3 AttcFindInfoReq() 31

6.1.4 AttcFindByTypeValueReq() 31

6.1.5 AttcReadByTypeReq() 32

6.1.6 AttcReadReq() 32

6.1.7 AttcReadLongReq() 33

6.1.8 AttcReadMultipleReq() 33

6.1.9 AttcReadByGroupTypeReq() 33

6.1.10 AttcWriteReq() 34

6.1.11 AttcWriteCmd() 34

6.1.12 AttcSignedWriteCmd() 35

6.1.13 AttcPrepareWriteReq() 35

6.1.14 AttcExecuteWriteReq() 36

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 7

Confidential

6.1.15 AttcCancelReq() 36

7 Client Discovery Interface 37

7.1 Constants and data types 37

7.1.1 Discovery Settings 37

7.1.2 attcDiscChar_t 38

7.1.3 attcDiscCfg_t 38

7.1.4 attcDiscCb_t 38

7.2 Functions 39

7.2.1 AttcDiscService() 39

7.2.2 AttcDiscServiceCmpl() 39

7.2.3 AttcDiscCharStart() 39

7.2.4 AttcDiscCharCmpl() 40

7.2.5 AttcDiscConfigStart() 40

7.2.6 AttcDiscConfigCmpl() 40

7.2.7 AttcDiscConfigResume() 41

8 GATT Discovery Procedures 42

9 Scenarios 44

9.1 Server operations 44

9.2 Client operations 45

9.3 Client prepare and execute write 46

9.4 Client discovery and configuration 47

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 8

Confidential

1 Preface

This preface introduces the Cordio Stack Attribute Protocol API Reference Manual.

1.1 About this book

This document describes the Attribute Protocol (ATT) API and lists the API functions and their

parameters.

1.1.1 Intended audience

This book is written for experienced software engineers who might or might not have experience

with ARM products. Such engineers typically have experience writing Bluetooth applications but

might have limited experience with the Cordio software stack.

It is also assumed that the readers have access to all necessary tools.

1.1.2 Using this book

This book is organized into the following chapters:

 Introduction

Read this for an overview of the Attribute Protocol subsystem.

 Main Interface

Read this for a description of the portion of the API that is common to the client and

server.

 Server Interface

Read this for a description how the API controls the Attribute Protocol Server (ATTS).

 Server Client Characteristic Configuration Interface

Read this for a description of the ATTS interface functions used for managing Client

Characteristic Configuration Descriptors (CCCD).

 Client Interface

Read this for a description of the functions related to initializing and initiating the

attribute client.

 Client Discovery Interface

Read this for a description of the utility interface that simplifies common GATT client

service and characteristic discovery procedures.

 GATT Discovery Procedures

Read this for a description of how the ATTC API is used to perform GATT discovery

procedures.

 Scenarios

Read this for a description of typical scenarios that use the API.

 Revisions

Read this chapter for descriptions of the changes between document versions.

1.1.3 Terms and abbreviations

For a list of ARM terms, see the ARM glossary.

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 9

Confidential

Terms specific to the Cordio software are listed below:

Term Description

ACL Asynchronous Connectionless data packet

AD Advertising Data

ARQ Automatic Repeat reQuest

ATT Attribute Protocol, also attribute protocol software subsystem

ATTC Attribute Protocol Client software subsystem

ATTS Attribute Protocol Server software subsystem

CCC or CCCD Client Characteristic Configuration Descriptor

CID Connection Identifier

CSRK Connection Signature Resolving Key

DM Device Manager software subsystem

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JIT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

OOB Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem

SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 10

Confidential

1.1.4 Conventions

The following table describes the typographical conventions:

Typographical conventions

Style Purpose

Italic Introduces special terminology, denotes cross-references, and

citations.

bold Highlights interface elements, such as menu names. Denotes

signal names. Also used for terms in descriptive lists, where

appropriate.

MONOSPACE Denotes text that you can enter at the keyboard, such as

commands, file and program names, and source code.

MONOSPACE Denotes a permitted abbreviation for a command or option. You

can enter the underlined text instead of the full command or option

name.

monospace italic Denotes arguments to monospace text where the argument is to be

replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they

appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical

meanings, that are defined in the ARM
®

 Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,

and UNPREDICTABLE.

1.1.5 Additional reading

This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

 Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

http://infocenter.arm.com/

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 11

Confidential

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

1.2.1 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

 The title.

 The number, ARM-EPM-115143.

 The page numbers to which your comments apply.

 A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the

quality of the represented document when used with any other PDF reader.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 12

Confidential

2 Introduction

This document describes the API of the Attribute Protocol (ATT) subsystem. The attribute

protocol is a core component of the Bluetooth LE protocol stack responsible for reading and

writing attributes. The ATT API is divided into three parts: The ATT server interface (ATTS),

the ATT client interface (ATTC) and the main interface common to both ATTS and ATTC.

Cordio's ATT subsystem also implements the features of the Generic Attribute Profile (GATT)

specification.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 13

Confidential

3 Main Interface

This portion of the ATT API is common to both client and server.

3.1 Constants and data types

3.1.1 Status

This parameter indicates the status of an attribute protocol operation.

Table 1 Main interface types

Name Description

ATT_SUCCESS Operation successful.

ATT_ERR_HANDLE Invalid handle.

ATT_ERR_READ Read not permitted.

ATT_ERR_WRITE Write not permitted.

ATT_ERR_INVALID_PDU Invalid pdu.

ATT_ERR_AUTH Insufficient authentication.

ATT_ERR_NOT_SUP Request not supported.

ATT_ERR_OFFSET Invalid offset.

ATT_ERR_AUTHOR Insufficient authorization.

ATT_ERR_QUEUE_FULL Prepare queue full.

ATT_ERR_NOT_FOUND Attribute not found.

ATT_ERR_NOT_LONG Attribute not long.

ATT_ERR_KEY_SIZE Insufficient encryption key size.

ATT_ERR_LENGTH Invalid attribute value length.

ATT_ERR_UNLIKELY Other unlikely error.

ATT_ERR_ENC Insufficient encryption.

ATT_ERR_GROUP_TYPE Unsupported group type.

ATT_ERR_RESOURCES Insufficient resources.

ATT_ERR_CCCD CCCD improperly configured.

ATT_ERR_IN_PROGRESS Procedure already in progress.

ATT_ERR_RANGE Value out of range.

ATT_ERR_MEMORY Out of memory.

ATT_ERR_TIMEOUT Transaction timeout.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 14

Confidential

ATT_ERR_OVERFLOW Transaction overflow.

ATT_ERR_INVALID_RSP Invalid response PDU.

ATT_ERR_CANCELLED Request cancelled.

ATT_ERR_UNDEFINED Other undefined error.

ATT_ERR_REQ_NOT_FOUND Required characteristic not found.

ATT_ERR_MTU_EXCEEDED Attribute PDU length exceeded MTU size

ATT_CONTINUING Procedure continuing.

ATT_ERR_VALUE_RANGE Value out of range.

HCI status values can also be passed through ATT. Since the values of HCI and ATT error

codes overlap, the constant ATT_HCI_ERR_BASE is added to HCI error codes before being passed

through ATT. See the Cordio HCI API Reference Manual for HCI error code values.

3.1.2 Operation

This parameter indicates the over-the-air attribute protocol operation.

Table 2 Operation parameter values

Name Description

ATT_PDU_ERR_RSP Error response.

ATT_PDU_MTU_REQ Exchange mtu request.

ATT_PDU_MTU_RSP Exchange mtu response.

ATT_PDU_FIND_INFO_REQ Find information request.

ATT_PDU_FIND_INFO_RSP Find information response.

ATT_PDU_FIND_TYPE_REQ Find by type value request.

ATT_PDU_FIND_TYPE_RSP Find by type value response.

ATT_PDU_READ_TYPE_REQ Read by type request.

ATT_PDU_READ_TYPE_RSP Read by type response.

ATT_PDU_READ_REQ Read request.

ATT_PDU_READ_RSP Read response.

ATT_PDU_READ_BLOB_REQ Read blob request.

ATT_PDU_READ_BLOB_RSP Read blob response.

ATT_PDU_READ_MULT_REQ Read multiple request.

ATT_PDU_READ_MULT_RSP Read multiple response.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 15

Confidential

ATT_PDU_READ_GROUP_TYPE_REQ Read by group type request.

ATT_PDU_READ_GROUP_TYPE_RSP Read by group type response.

ATT_PDU_WRITE_REQ Write request.

ATT_PDU_WRITE_RSP Write response.

ATT_PDU_WRITE_CMD Write command.

ATT_PDU_SIGNED_WRITE_CMD Signed write command.

ATT_PDU_PREP_WRITE_REQ Prepare write request.

ATT_PDU_PREP_WRITE_RSP Prepare write response.

ATT_PDU_EXEC_WRITE_REQ Execute write request.

ATT_PDU_EXEC_WRITE_RSP Execute write response.

ATT_PDU_VALUE_NTF Handle value notification.

ATT_PDU_VALUE_IND Handle value indication.

ATT_PDU_VALUE_CNF Handle value confirmation.

ATT_PDU_MAX PDU maximum.

3.1.3 attCfg_t

This data type contains ATT run-time configurable parameters.

Table 3 attCfg_t parameters

Type Name Description

wsfTimerTicks_t discIdleTimeout ATT server service discovery connection idle timeout in

seconds.

uint16_t mtu Desired ATT MTU.

uint8_t transTimeout Transaction Timeout in seconds.

uint8_t numPrepWrites Number of queued prepare writes supported by server.

3.2 Functions

3.2.1 AttRegister()

Register a callback with ATT.

Syntax:

void AttRegister(attCback_t cback)

Where:

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 16

Confidential

 cback: Client callback function. See 3.3.1.

3.2.2 AttConnRegister()

Register a connection callback with ATT. The callback is typically used to manage the attribute

server database.

Syntax:

void AttConnRegister(dmCback_t cback)

Where:

 cback: DM client callback function. See the Cordio Device Manager API Reference

Manual for more information.

3.2.3 AttGetMtu()

Get the attribute protocol MTU of a connection.

Syntax:

uint16_t AttGetMtu(dmConnId_t connId)

Where:

 connId: DM connection ID.

3.3 Callback interface

3.3.1 (*attCback_t)()

This callback function sends ATT events to the client application. A single callback function is

used for both ATTS and ATTC.

Syntax:

void (*attCback_t)(attEvt_t *pEvt)

Where:

 pEvt: Pointer to ATT event structure.

3.3.2 Callback events

The following callback event values are passed in the ATT event structure.

Table 4 Callback events

Name Description

ATTC_FIND_INFO_RSP Find information response.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 17

Confidential

ATTC_FIND_BY_TYPE_VALUE_RSP Find by type value response.

ATTC_READ_BY_TYPE_RSP Read by type value response.

ATTC_READ_RSP Read response.

ATTC_READ_LONG_RSP Read long response.

ATTC_READ_MULTIPLE_RSP Read multiple response.

ATTC_READ_BY_GROUP_TYPE_RSP Read group type response.

ATTC_WRITE_RSP Write response.

ATTC_WRITE_CMD_RSP Write command response.

ATTC_PREPARE_WRITE_RSP Prepare write response.

ATTC_EXECUTE_WRITE_RSP Execute write response.

ATTC_HANDLE_VALUE_NTF Handle value notification.

ATTC_HANDLE_VALUE_IND Handle value indication.

ATTS_HANDLE_VALUE_CNF Handle value confirmation.

ATTS_CCC_STATE_IND Client characteristic configuration state change

3.3.3 attEvt_t

This data type is used for all callback events.

Table 5 attEvt_t types

Type Name Description

uint8_t hdr.event Callback event.

uint16_t hdr.param DM connection ID.

uint8_t hdr.status Event status.

uint8_t * pValue Pointer to value data, valid if valueLen > 0.

uint16_t valueLen Length of value data.

uint16_t handle Attribute handle.

bool_t continuing TRUE if more response packets expected.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 18

Confidential

4 Server Interface

This API controls the operation of the attribute protocol server (ATTS).

4.1 Attribute server operation

An attribute server provides access to an attribute database stored within the server. According

to the Bluetooth specification, attributes are collected into groups of characteristics, which are

further collected into a service. A service is a collection of characteristics designed to

accomplish a particular function, such as an alert service or a sensor service.

Figure 1 shows how services, characteristics, and attributes are organized according to the

Bluetooth specification. An attribute database typically contains one or more services. Each

service contains a set of characteristics, which is made up of one or more attributes. The type of

attribute is uniquely identified by a UUID and an instance of an attribute in a server is uniquely

identified by a handle. An attribute typically contains data that can be read or written by the

attribute client on a peer device.

Figure 1. Services, characteristics, and attributes stored in an attribute server

In the ATTS implementation, the attribute database consists of a linked list of one or more group

structures. Each attribute group structure points to an array of attribute structures. Each attribute

structure contains the UUID, data, and other information for the attribute. The data structures in

the ATTS database implementation are illustrated in Figure 2.

The group structure contains a pointer to the attribute array, the handle range of the attributes it

references, and other data. A database implementation will typically use one group structure per

service, although this is not a requirement; a group can contain multiple services, or a service can

Service C

Characteristic X

 Attribute a

 Attribute b

 …

Characteristic Y

 Attribute c

 Attribute d

 …

…

Service B

Characteristic X

 Attribute a

 Attribute b

 …

Characteristic Y

 Attribute c

 Attribute d

 …

…

Service A

Characteristic X

 Attribute a

 Attribute b

 …

Characteristic Y

 Attribute c

 Attribute d

 …

…

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 19

Confidential

be implemented with multiple groups.

Figure 2. ATTS attribute database data structures

4.2 Constants and data types

4.2.1 Attribute settings

This bit mask parameter controls the settings of an attribute.

Table 6 Server interface types

Name Value Description

ATTS_SET_UUID_128 0x01 Set if the UUID is 128 bits in length.

ATTS_SET_WRITE_CBACK 0x02 Set if the group callback is executed when this attribute is

written by a client device

ATTS_SET_READ_CBACK 0x04 Set if the group callback is executed when this attribute is read

by a client device.

ATTS_SET_VARIABLE_LEN 0x08 Set if the attribute has a variable length.

ATTS_SET_ALLOW_OFFSET 0x10 Set if writes are allowed with an offset.

ATTS_SET_CCC 0x20 Set if the attribute is a client characteristic configuration

descriptor.

ATTS_SET_ALLOW_SIGNED 0x40 Set if signed writes are allowed.

ATTS_SET_REQ_SIGNED 0x80 Set if signed writes are required if link is not encrypted.

4.2.2 Attribute security settings

This bit mask parameter controls the security settings of an attribute. These values can be set in

any combination.

Attribute

Array

Group

Structure

Attribute

Array

Group

Structure

Attribute Structure

UUID

Data

Length

…

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 20

Confidential

Table 7 Attribute security settings

Name Value Description

ATTS_PERMIT_READ 0x01 Set if attribute can be read.

ATTS_PERMIT_READ_AUTH 0x02 Set if attribute read requires authentication.

ATTS_PERMIT_READ_AUTHORIZ 0x04 Set if attribute read requires authorization.

ATTS_PERMIT_READ_ENC 0x08 Set if attribute read requires encryption.

ATTS_PERMIT_WRITE 0x10 Set if attribute can be written.

ATTS_PERMIT_WRITE_AUTH 0x20 Set if attribute write requires authentication.

ATTS_PERMIT_WRITE_AUTHORIZ 0x40 Set if attribute write requires authorization.

ATTS_PERMIT_WRITE_ENC 0x80 Set if attribute write requires encryption.

4.2.3 Attribute UUID

An attribute UUID is either 16 bits or 128 bits in length. The UUID value is stored as a byte

array in little endian format. For example:

/* 16 bit UUID value 0x0016 */

uint8 uuid16[] = {0x16, 0x00};

/* 128 bit UUID value 00001234-0000-1000-8000-00805F9B34FB */

uint8 uuid128[] = {0xFB, 0x34, 0x9B, 0x5F, 0x80, 0x00, 0x00, 0x80,

 0x00, 0x10, 0x00, 0x00, 0x34, 0x12, 0x00, 0x00};

4.2.4 Attribute value

The attribute value is stored as a byte array. If the attribute is an integer, the value is stored in

little endian format.

4.2.5 Attribute handles

The attribute protocol uses handles to uniquely identify attributes. To save memory, the attribute

server does not store a handle for each attribute. Rather, it uses the starting handle value in each

group to derive the handle of a particular attribute in the group. The start handle is the handle of

the attribute at index zero of the group’s attribute array. The handle of each subsequent attribute

is simply the start handle plus the attributes index in the array.

4.2.6 attsAttr_t

This data type defines the structure used by an attribute in a group.

Table 8 attsAttr_t types

Type Name Description

uint8_t * pUuid Pointer to the attribute’s UUID.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 21

Confidential

uint8_t * pValue Pointer to the attribute’s value.

uint16_t * pLen Pointer to the length of the attribute’s value.

uint16_t maxLen Maximum length of attribute’s value.

uint8_t settings Attribute settings. See 4.2.1.

uint8_t permissions Attribute permissions. See 4.2.2.

4.2.7 attsGroup_t

This data type defines the structure used by a group.

Table 9 attsGroup_t types

Type Name Description

attsGroup_t * pNext For internal use only.

attsAttr_t * pAttr Pointer to attribute list for this group.

attsReadCback_t readCback Read callback function. See 4.4.1.

attsWriteCback_t writeCback Write callback function. See 4.4.2.

uint16_t startHandle The handle of the first attribute in this group.

uint16_t endHandle The handle of the last attribute in this group.

4.3 Functions

4.3.1 AttsInit()

This function is called to initialize the attribute server. This function is generally called once

during system initialization before any other ATTS API functions are called.

Syntax:

void AttsInit(void)

4.3.2 AttsIndInit()

This function is called to initialize the attribute server for indications/notifications. This function

is generally called once during system initialization before any other ATTS API functions are

called.

Syntax:

void AttsIndInit(void)

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 22

Confidential

4.3.3 AttsSignInit()

This function is called to initialize the attribute server for data signing. This function is generally

called once during system initialization before any other ATTS API functions are called.

Syntax:

void AttsSignInit(void)

4.3.4 AttsAuthorRegister()

This function is called to register an authorization callback with the attribute server. This

provides a mechanism to allow user authorization of read or write operations on a particular

attribute.

Syntax:

void AttsAuthorRegister(attsAuthorCback_t cback)

4.3.5 AttsAddGroup()

Add an attribute group to the attribute server. The memory for the group structure is allocated by

the caller and can only be deallocated after AttsRemoveGroup() is called.

Syntax:

void AttsAddGroup(attsGroup_t *pGroup)

Where:

 pGroup: Pointer to an attribute group structure. See 4.2.7.

4.3.6 AttsRemoveGroup()

Remove an attribute group from the attribute server.

Syntax:

void AttsRemoveGroup(uint16_t startHandle)

Where:

 startHandle: Start handle of attribute group to be removed.

4.3.7 AttsSetAttr()

Set an attribute value in the attribute server. Before calling this function the group containing the

attribute must be added to the server by calling AttsAddGroup().

Syntax:

void AttsSetAttr(uint16_t handle, uint16_t valueLen, uint8_t *pValue)

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 23

Confidential

Where:

 handle: Attribute handle.

 valueLen: Attribute length.

 pValue. Attribute value. See 4.2.4.

This function returns ATT_SUCCESS if successful otherwise error.

4.3.8 AttsGetAttr()

Get an attribute value from the attribute server.

Syntax:

void AttsGetAttr(uint16_t handle, uint16_t *pLen, uint8_t **pValue)

Where:

 handle: Attribute handle.

 pLen: Pointer to the attribute length.

 pValue. Attribute value. See 4.2.4.

This function returns ATT_SUCCESS if successful otherwise error.

This function returns the attribute length in pLen and a pointer to the attribute value in pValue.

Note that pValue directly accesses memory inside the attribute database.

4.3.9 AttsHandleValueInd()

Send an attribute protocol Handle Value Indication.

Syntax:

void AttsHandleValueInd(dmConnId_t connId, uint16_t handle, uint16_t

valueLen, uint8_t *pValue)

Where:

 connId: DM connection ID.

 handle: Attribute handle.

 valueLLen: Length of value data.

 pValue. Pointer to value data.

When the operation is complete the client’s callback function is called with an

ATTS_HANDLE_VALUE_CNF event.

4.3.10 AttsHandleValueNtf()

Send an attribute protocol Handle Value Notification.

Syntax:

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 24

Confidential

void AttsHandleValueNtf(dmConnId_t connId, uint16_t handle, uint16_t

valueLen, uint8_t *pValue)

Where:

 connId: DM connection ID.

 handle: Attribute handle.

 valueLen: Length of value data.

 pValue. Pointer to value data.

When the operation is complete the client’s callback function is called with an

ATTS_HANDLE_VALUE_CNF event.

4.3.11 AttsSetCsrk()

Set the peer's data signing key on this connection. This function is typically called from the ATT

connection callback when the connection is established. The caller is responsible for

maintaining the memory that contains the key.

Syntax:

void AttsSetCsrk(dmConnId_t connId, uint8_t *pCsrk)

Where:

 connId: DM connection ID.

 pCsrk: Pointer to data signing key (CSRK).

4.3.12 AttsSetSignCounter()

Set the peer's sign counter on this connection. This function is typically called from the ATT

connection callback when the connection is established. ATT maintains the value of the sign

counter internally and sets the value when a signed packet is successfully received.

Syntax:

void AttsSetSignCounter(dmConnId_t connId, uint32_t signCounter)

Where:

 connId: DM connection ID.

 handle: Attribute handle.

4.3.13 AttsGetSignCounter()

Get the current value peer's sign counter on this connection. This function is typically called

from the ATT connection callback when the connection is closed so the application can store the

sign counter for use on future connections.

Syntax:

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 25

Confidential

uint32_t AttsGetSignCounter(dmConnId_t connId)

Where:

 connId: DM connection ID.

This function returns the current value of the sign counter.

4.4 Callback interface

4.4.1 (*attsReadCback_t)()

This is the attribute server read callback. It is executed on an attribute read operation if bitmask

ATTS_SET_READ_CBACK is set in the settings field of the attribute structure.

Syntax:

uint8_t (*attsReadCback_t)(dmConnId_t connId, uint16_t handle, uint8_t

operation, uint16_t offset, attsAttr_t *pAttr)

Where:

 connId: DM connection ID.

 handle: Attribute handle.

 operation: Operation type. See 3.1.2.

 offset: Read data offset.

 pAttr: Pointer to attribute structure.

This function returns a status value (see 3.1.1). If the operation is successful then ATT_SUCCESS

should be returned.

For a read operation, if the operation is successful the function must set pAttr->pValue to the

data to be read. In addition, if the attribute is variable length then pAttr->pLen must be set as

well.

4.4.2 (*attsWriteCback_t)()

This is the attribute server write callback. It is executed on an attribute write operation if

bitmask ATTS_SET_WRITE_CBACK is set in the settings field of the attribute structure.

Syntax:

void (*attsWriteCback_t)(dmConnId_t connId, uint16_t handle, uint8_t

operation, uint16_t offset, uint16_t len, uint8_t *pValue,

attsAttr_t *pAttr)

Where:

 connId: DM connection ID.

 handle: Attribute handle.

 operation: Operation type. See 3.1.2.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 26

Confidential

 offset: Write data offset.

 len: Length of data to write.

 pValue: Data to write.

 pAttr: Pointer to attribute structure.

This function returns a status value (see 3.1.1). If the operation is successful then ATT_SUCCESS

should be returned.

4.4.3 (*attsAuthorCback_t)()

This callback function is executed when a read or write operation occurs and the security field of

an attribute structure is set to ATTS_PERMIT_READ_AUTHORIZ or ATTS_PERMIT_WRITE_AUTHORIZ

respectively.

Syntax:

uint8_t (*attsAuthorCback_t)(dmConnId_t connId, uint8_t permit, uint16_t

handle)

Where:

 connId: DM connection ID.

 permit: Set to ATTS_PERMIT_WRITE for a write operation or ATTS_PERMIT_READ for a

read operation.

 handle: Attribute handle.

This function returns a status value (see 3.1.1). If the operation is successful then

ATT_SUCCESS should be returned. If the operation fails then ATTS_ERR_AUTHOR is typically

returned.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 27

Confidential

5 Server Client Characteristic Configuration Interface

The following ATTS interface functions are a utility service for managing client characteristic

configuration descriptors (abbreviated as CCC or CCCD). The client characteristic configuration

descriptor is used to enable or disable indications or notifications of the characteristic value

associated with the descriptor.

The Bluetooth specification has certain requirements for CCCDs:

1. The server must maintain the value of the CCCD separately for each client.

2. If the server and client are bonded, the value of the CCCD is persistent across

connections.

3. If the server and client are not bonded, the value of the CCCD is reset to zero when the

client connects.

The functions in this interface simplify and centralize the management of CCCDs. However if a

server application does not use notifications or indications, or does not support bonding, then

these functions do not need to be used.

An application using this interface is responsible for defining certain data structures, as shown

below in Figure 3.

Figure 3. CCCD data structures defined by the application

The data structures consist of bonded device CCCD tables, a CCCD settings table, a connection

storage buffer, and a CCCD index enumeration. The Bonded device CCCD tables maintain

persistent storage of the CCCD values for each bonded device. The CCCD settings table

contains the CCCD attribute handle, security settings, and permitted CCCD values. The

connection storage buffer holds separate CCCD values for all simultaneous connections. All

tables are indexed by the CCCD index enumeration that defines the position in the table

associated with each CCCD.

Bonded

Device CCCD

Tables

CCCD

Settings Table

Connection

Storage Buffer

0

1

2
3

4

5

CCCD Index

Enumeration

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 28

Confidential

5.1 Constants and data types

5.1.1 attsCccSet_t

This data type defines the client characteristic configuration settings.

Table 10 attsCccSet_t types

Type Name Description

uint16_t handle Client characteristc configuration descriptor handle.

uint16_t valueRange Acceptable value range of the descriptor value.

uint8_t secLevel Security level of characteristic value associated with the CCCD.

5.2 Functions

5.2.1 AttsCccRegister()

Register the utility service for managing client characteristic configuration descriptors. This

function is typically called once on system initialization.

Syntax:

void AttsCccRegister(uint8_t setLen, attsCccSet_t *pSet, attsCccCback_t

cback)

Where:

 setLen: Length of settings array.

 pSet: Array of CCC descriptor settings.

 cback: Client callback function.

5.2.2 AttsCccInitTable()

Initialize the client characteristic configuration descriptor value table for a connection. The table

is initialized with the values from pCccTbl. If pCccTbl is NULL the table will be initialized to

zero. This function is typically called when a connection is established or when a device is

bonded.

Syntax:

void AttsCccInitTable(dmConnId_t connId, uint16_t *pCccTbl)

Where:

 connId: DM connection ID.

 pCccTbl: Pointer to the descriptor value array. The length of the array must equal the

value of setLen passed to AttsCccRegister().

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 29

Confidential

5.2.3 AttsCccClearTable()

Clear and deallocate the client characteristic configuration descriptor value table for a

connection. This function must be called when a connection is closed.

Syntax:

void AttsCccClearTable(dmConnId_t connId)

Where:

 connId: DM connection ID.

5.2.4 AttsCccGet()

Get the value of a client characteristic configuration descriptor by its index. If not found, return

zero.

Syntax:

uint16_t AttsCccGet(dmConnId_t connId, uint8_t idx)

Where:

 connId: DM connection ID.

 idx: Index of descriptor in CCC descriptor handle table.

5.2.5 AttsCccSet()

Set the value of a client characteristic configuration descriptor by its index.

Syntax:

void AttsCccSet(dmConnId_t connId, uint8_t idx, uint16_t value)

Where:

 connId: DM connection ID.

 idx: Index of descriptor in CCC descriptor handle table.

 value: Value of the descriptor.

5.2.6 AttsCccEnabled()

Check if a client characteristic configuration descriptor is enabled and if the characteristic's

security level has been met.

Syntax:

uint16_t AttsCccEnabled(dmConnId_t connId, uint8_t idx)

Where:

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 30

Confidential

 connId: DM connection ID.

 idx: Index of descriptor in CCC descriptor handle table.

5.3 Callback Interface

5.3.1 attsCccEvt_t

This data type defines the client characteristic configuration callback structure.

Table 11 attsCccEvt_t callback types

Type Name Description

uint8_t hdr.event Callback event.

uint16_t hdr.param DM connection ID.

uint16_t handle CCCD handle.

uint16_t value CCCD value.

uint8_t idx CCCD index.

5.3.2 (*attsCccCback_t)()

Client characteristic configuration callback. This function is executed when a CCCD value

changes. This happens when a peer device writes a new value to the CCCD or when a CCCD

table is initialized by calling function AttsCccInitTable().

Syntax:

void (*attsCccCback_t)(attsCccEvt_t *pEvt)

Where:

 pEvt: Pointer to callback structure.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 31

Confidential

6 Client interface

This section describes functions related to initializing and initiating the attribute client.

6.1 Functions

6.1.1 AttcInit()

This function is called to initialize the attribute client. This function is generally called once

during system initialization before any other ATTC API functions are called.

Syntax:

void AttcInit(void)

6.1.2 AttcSignInit()

This function is called to initialize the attribute client for data signing. This function is generally

called once during system initialization before any other ATTC API functions are called.

Syntax:

void AttcSignInit(void)

6.1.3 AttcFindInfoReq()

Initiate an attribute protocol Find Information Request.

Syntax:

void AttcFindInfoReq(dmConnId_t connId, uint16_t startHandle, uint16_t

endHandle, bool_t continuing)

Where:

 connId: DM connection ID.

 startHandle: Attribute start handle.

 endHandle: Attribute end handle.

 continuing: TRUE if ATTC continues sending requests until complete.

When a response is received the client’s callback function is called with an

ATTC_FIND_INFO_RSP. If parameter continuing is TRUE, ATTC will automatically send the

next request until all responses are received or an error is received. If parameter continuing is

FALSE, the client application must call this function again and update the start handle

appropriately to send the next response.

6.1.4 AttcFindByTypeValueReq()

Initiate an attribute protocol Find By Type Value Request.

Syntax:

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 32

Confidential

void AttcFindByTypeValueReq(dmConnId_t connId, uint16_t startHandle,

uint16_t endHandle, uint16_t uuid16, uint16_t valueLen, uint8_t

*pValue, bool_t continuing)

Where:

 connId: DM connection ID.

 startHandle: Attribute start handle.

 endHandle: Attribute end handle.

 uuid16: 16-bit UUID to find.

 valueLen: Length of value data.

 pValue: Pointer to value data.

 continuing: TRUE if ATTC continues sending requests until complete.

When a response is received the client’s callback function is called with an

ATTC_FIND_BY_TYPE_VALUE_RSP. If parameter continuing is TRUE, ATTC will automatically

send the next request until all responses are received or an error is received. If parameter

continuing is FALSE, the client application must call this function again and update the start

handle appropriately to send the next response.

6.1.5 AttcReadByTypeReq()

Initiate an attribute protocol Read By Type Request.

Syntax:

void AttcReadByTypeReq(dmConnId_t connId, uint16_t startHandle, uint16_t

endHandle, uint8_t uuidLen, uint8_t *pUuid, bool_t continuing)

Where:

 connId: DM connection ID.

 startHandle: Attribute start handle.

 endHandle: Attribute end handle.

 uuidLen: Length of UUID (2 or 16).

 pUuid: Pointer to UUID data.

 continuing: TRUE if ATTC continues sending requests until complete.

When a response is received the client’s callback function is called with an

ATTC_READ_BY_TYPE_RSP. If parameter continuing is TRUE, ATTC will automatically send the

next request until all responses are received or an error is received. If parameter continuing is

FALSE, the client application must call this function again and update the start handle

appropriately to send the next response.

6.1.6 AttcReadReq()

Initiate an attribute protocol Read Request.

Syntax:

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 33

Confidential

void AttcReadReq(dmConnId_t connId, uint16_t handle)

Where:

 connId: DM connection ID.

 handle: Attribute handle.

When a response is received the client’s callback function is called with an ATTC_READ _RSP.

6.1.7 AttcReadLongReq()

Initiate an attribute protocol Read Long Request.

Syntax:

void AttcReadLongReq(dmConnId_t connId, uint16_t handle, uint16_t offset,

bool_t continuing)

Where:

 connId: DM connection ID.

 handle: Attribute handle.

 offset: Read attribute data starting at this offset.

 continuing: TRUE if ATTC continues sending requests until complete.

When a response is received the client’s callback function is called with an

ATTC_READ_LONG_RSP. If parameter continuing is TRUE, ATTC will automatically send the

next request until all responses are received or an error is received. If parameter continuing is

FALSE, the client application must call this function again and update the offset appropriately to

send the next response.

6.1.8 AttcReadMultipleReq()

Initiate an attribute protocol Read Multiple Request.

Syntax:

void AttcReadMultipleReq(dmConnId_t connId, uint8_t numHandles, uint16_t

*pHandles)

Where:

 connId: DM connection ID.

 numHandles: Number of handles in attribute handle list.

 pHandles: List of attribute handles.

When a response is received the client’s callback function is called with an ATTC_READ

_MULTIPLE_RSP.

6.1.9 AttcReadByGroupTypeReq()

Initiate an attribute protocol Read By GroupType Request.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 34

Confidential

Syntax:

void AttcReadByGroupTypeReq(dmConnId_t connId, uint16_t startHandle,

uint16_t endHandle, uint8_t uuidLen, uint8_t *pUuid, bool_t

continuing)

Where:

 connId: DM connection ID.

 startHandle: Attribute start handle.

 endHandle: Attribute end handle.

 uuidLen: Length of UUID (2 or 16).

 pUuid: Pointer to UUID data.

 continuing: TRUE if ATTC continues sending requests until complete.

When a response is received the client’s callback function is called with an

ATTC_READ_BY_GROUP_TYPE_RSP. If parameter continuing is TRUE, ATTC will automatically

send the next request until all responses are received or an error is received. If parameter

continuing is FALSE, the client application must call this function again and update the start

handle appropriately to send the next response.

6.1.10 AttcWriteReq()

Initiate an attribute protocol Write Request.

Syntax:

void AttcWriteReq(dmConnId_t connId, uint16_t handle, uint16_t valueLen,

uint8_t *pValue)

Where:

 connId: DM connection ID.

 handle: Attribute start handle.

 valueLen: Length of value data.

 pValue: Pointer to value data.

When a response is received the client’s callback function is called with an ATTC_WRITE_RSP.

6.1.11 AttcWriteCmd()

Initiate an attribute protocol Write Command.

Syntax:

void AttcWriteCmd(dmConnId_t connId, uint16_t handle, uint16_t valueLen,

uint8_t *pValue)

Where:

 connId: DM connection ID.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 35

Confidential

 handle: Attribute start handle.

 valueLen: Length of value data.

 pValue: Pointer to value data.

When the packet has been sent the client’s callback function is called with an

ATTC_WRITE_CMD_RSP.

6.1.12 AttcSignedWriteCmd()

Initiate an attribute protocol Write Command.

Syntax:

void AttcSignedWriteCmd(dmConnId_t connId, uint16_t handle, uint32_t

signCounter, uint16_t valueLen, uint8_t *pValue)

Where:

 connId: DM connection ID.

 handle: Attribute start handle.

 signCounter: Value of sign counter.

 valueLen: Length of value data.

 pValue: Pointer to value data.

When the packet has been sent the client’s callback function is called with an

ATTC_WRITE_CMD_RSP.

Note that the application is responsible for maintaining the value of the sign counter. The sign

counter should be incremented each time this function is called.

6.1.13 AttcPrepareWriteReq()

Initiate an attribute protocol Prepare Write Request.

Syntax:

void AttcPrepareWriteReq(dmConnId_t connId, uint16_t handle, uint16_t

offset, uint16_t valueLen, uint8_t *pValue, bool_t valueByRef,

bool_t continuing)

Where:

 connId: DM connection ID.

 handle: Attribute start handle.

 offset: Write attribute data starting at this offset.

 valueLen: Length of value data.

 pValue: Pointer to value data.

 valueByRef: TRUE if pValue data is accessed by reference rather than copied.

 continuing: TRUE if ATTC continues sending requests until complete.

When a response is received the client’s callback function is called with an

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 36

Confidential

ATTC_PREPARE_WRITE_RSP. If parameter continuing is TRUE, ATTC will automatically send

the next request until all responses are received or an error is received. If parameter continuing

is FALSE, the client application must call this function again and update the offset appropriately

to send the next response.

6.1.14 AttcExecuteWriteReq()

Initiate an attribute protocol Execute Write Request.

Syntax:

void AttcExecuteWriteReq(dmConnId_t connId, bool_t writeAll)

Where:

 connId: DM connection ID.

 writeAll: TRUE to write all queued writes, FALSE to cancel all queued writes.

When a response is received the client’s callback function is called with an

ATTC_EXECUTE_WRITE_RSP.

6.1.15 AttcCancelReq()

Cancel an attribute protocol request in progress.

Syntax:

void AttcCancelReq(dmConnId_t connId)

Where:

 connId: DM connection ID.

If the request is cancelled the client’s callback function is called with the event corresponding to

the request.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 37

Confidential

7 Client Discovery Interface

The ATTC API contains a utility interface that simplifies common GATT client service and

characteristic discovery procedures. It also contains interfaces that simplify the configuration of

a service, for example reading or writing a set of characteristics or attributes after discovery is

complete.

An application using this interface is responsible for defining certain data structures, as shown

below in Figure 4.

Figure 4. Client discovery data structures defined by the application

The client discovery API uses a discovery control block that contains data used for the discovery

and configuration procedure. The control block points to a discovery characteristic list, a

configuration characteristic list, and a handle list.

The discovery characteristic list is a list of characteristics and descriptors that are to be

discovered. Each item in the list contains the UUID of the characteristic or descriptor and its

settings. As characteristics and descriptors are discovered the handle list is populated with their

respective handles.

The configuration characteristic list contains a list of characteristics and descriptors to read or

write. Each item in the list contains the value (if it is to be written) and the handle index of the

characteristic or descriptor in the handle list.

7.1 Constants and data types

7.1.1 Discovery Settings

These settings are used to define the features of a characteristic that are being discovered.

Discovery

Characteristic

List

Configuration

Characteristic

List

Discovery

Control Block

Handle

List

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 38

Confidential

Table 12 Client discovery type

Name Description

ATTC_SET_UUID_128 Set if the UUID is 128 bits in length.

ATTC_SET_REQUIRED Set if characteristic must be discovered.

ATTC_SET_DESCRIPTOR Set if this is a characteristic descriptor.

7.1.2 attcDiscChar_t

This data type is the structure for characteristic and descriptor discovery.

Table 13 attsDiscChar_t type

Type Name Description

uint8_t * pUuid Pointer to UUID.

uint8_t settings Characteristic discovery settings. See 7.1.1.

7.1.3 attcDiscCfg_t

This data type is the structure for characteristic and descriptor configuration.

Table 14 attsDiscCfg_t type

Type Name Description

uint8_t * pValue Pointer to UUID.

uint8_t valueLen Default value length.

uint8_t hdlIdx Index of its handle in handle list.

7.1.4 attcDiscCb_t

This data type is the discovery control block.

Table 15 attsDiscCb_t type

Type Name Description

attcDiscChar_t ** pCharList Characterisic list for discovery.

uint16_t* pHdlList Characteristic handle list.

attcDiscCfg_t* pCfgList Characterisic list for configuration.

uint8_t charListLen Characteristic and handle list length.

uint8_t cfgListLen Configuration list length.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 39

Confidential

7.2 Functions

7.2.1 AttcDiscService()

This utility function discovers the given service on a peer device. Function

AttcFindByTypeValueReq() is called to initiate the discovery procedure.

Syntax:

void AttcDiscService(dmConnId_t connId, attcDiscCb_t *pCb, uint8_t uuidLen,

uint8_t *pUuid)

Where:

 connId: DM connection ID.

 pCb: Pointer to discovery control block.

 uuidLen: Length of service UUID (2 or 16).

 pUuid: Pointer to service UUID.

7.2.2 AttcDiscServiceCmpl()

This utility function processes a service discovery result. It should be called when an

ATTC_FIND_BY_TYPE_VALUE_RSP callback event is received after service discovery is initiated

by calling AttcDiscService().

Syntax:

uint8_t AttcDiscServiceCmpl(attcDiscCb_t *pCb, attEvt_t *pMsg)

Where:

 pCb: Pointer to discovery control block.

 pMsg: ATT callback event message.

Returns ATT_SUCCESS if successful otherwise error.

7.2.3 AttcDiscCharStart()

This utility function starts characteristic and characteristic descriptor discovery for a service on a

peer device. The service must have been previously discovered by calling AttcDiscService()

and AttcDiscServiceCmpl().

Syntax:

void AttcDiscCharStart(dmConnId_t connId, attcDiscCb_t *pCb)

Where:

 connId: DM connection ID.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 40

Confidential

 pCb: Pointer to discovery control block.

7.2.4 AttcDiscCharCmpl()

This utility function processes a characteristic discovery result. It should be called when an

ATTC_READ_BY_TYPE_RSP or ATTC_FIND_INFO_RSP callback event is received after

characteristic discovery is initiated by calling AttcDiscCharStart().

Syntax:

uint8_t AttcDiscCharCmpl(attcDiscCb_t *pCb, attEvt_t *pMsg)

Where:

 pCb: Pointer to discovery control block.

 pMsg: ATT callback event message.

Returns ATT_CONTINUING if successful and the discovery procedure is continuing. Returns

ATT_SUCCESS if the discovery procedure completed successfully. Returns

ATT_ERR_REQ_NOT_FOUND if discovery failed because a required characteristic was not found.

Otherwise the discovery procedure failed.

7.2.5 AttcDiscConfigStart()

This utility function starts characteristic configuration for characteristics on a peer device. The

characteristics must have been previously discovered by calling AttcDiscCharStart() and

AttcDiscCharCmpl().

Syntax:

uint8_t AttcDiscConfigStart(dmConnId_t connId, attcDiscCb_t *pCb)

Where:

 connId: DM connection ID.

 pCb: Pointer to discovery control block.

Returns ATT_CONTINUING if successful and configuration procedure is continuing. Returns

ATT_SUCCESS if nothing to configure.

7.2.6 AttcDiscConfigCmpl()

This utility function initiates the next characteristic configuration procedure. It should be called

when an ATTC_READ_RSP or ATTC_WRITE_RSP callback event is received after characteristic

configuration is initiated by calling AttcDiscConfigStart().

Syntax:

uint8_t AttcDiscConfigCmpl(dmConnId_t connId, attcDiscCb_t *pCb)

Where:

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 41

Confidential

 connId: DM connection ID.

 pCb: Pointer to discovery control block.

Returns ATT_CONTINUING if successful and configuration procedure is continuing. Returns

ATT_SUCCESS if configuration procedure completed successfully.

7.2.7 AttcDiscConfigResume()

This utility function resumes the characteristic configuration procedure. It can be called when an

ATTC_READ_RSP or ATTC_WRITE_RSP callback event is received with failure status to attempt the

read or write procedure again.

Syntax:

AttcDiscConfigResume(dmConnId_t connId, attcDiscCb_t *pCb)

Where:

 connId: DM connection ID.

 pCb: Pointer to discovery control block.

 Returns ATT_CONTINUING if successful and configuration procedure is continuing.

Returns ATT_SUCCESS if configuration procedure completed successfully.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 42

Confidential

8 GATT Discovery Procedures

The Generic attribute profile (GATT) of the Bluetooth core specification defines how attribute

protocol operations are used to perform GATT procedures. The table below demonstrates how

the ATTC API is used to perform GATT discovery procedures.

Table 16 GATT procedures

GATT Procedure ATTC API

Discover All Primary Services AttcReadByGroupTypeReq()

startHandle = 0x0001

EndHandle = 0xFFFF

uuidLen = 2

pUuid = pointer to

ATT_UUID_PRIMARY_SERVICE

continuing = TRUE

Discover Primary Services by Service UUID AttcFindByTypeValueReq()

startHandle = 0x0001

EndHandle = 0xFFFF

uuid16 = ATT_UUID_PRIMARY_SERVICE

valueLen = 2 or 16

pValue = pointer to service UUID

continuing = TRUE

Find Included Services AttcReadByTypeReq()

startHandle = service start handle

EndHandle = service end handle

uuidLen = 2

pUuid = pointer to

ATT_UUID_INCLUDE

Discover All Characteristics of a Service AttcReadByTypeReq()

startHandle = service start handle

EndHandle = service end handle

uuidLen = 2

pUuid = pointer to

ATT_UUID_CHARACTERISTIC

continuing = TRUE

Discover Characteristics by UUID AttcReadByTypeReq()

startHandle = service start handle

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 43

Confidential

EndHandle = service end handle

uuidLen = 2

pUuid = pointer to

ATT_UUID_CHARACTERISTIC

continuing = TRUE

Discover All Characteristic Descriptors AttcFindInfoReq()

startHandle = characteristic value

handle + 1

EndHandle = characteristic end

handle

continuing = TRUE

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 44

Confidential

9 Scenarios

This section describes typical scenarios that use the API.

9.1 Server operations

Figure 5 shows an example server operation.

First, a connection is established with an attribute protocol client on a peer device. The peer

device sends an attribute protocol read request. In this example, the read request is handled

internally by the stack and no interaction is required from the application.

Next, the peer device sends a write request. In this example, the attribute being written is

configured to execute a write callback function. The callback executes and the application

performs whatever operation is necessary for the attribute. Upon return of the callback the stack

sends a write response packet.

Next, the application sends a handle value notification to the peer device by calling

AttsHandleValueInd(). The stack sends a handle value indication packet.

When the stack receives a handle value confirmation packet from the peer it executes the

application's ATT callback with event ATTS_HANDLE_VALUE_CNF.

Application Stack Peer Device

Read Request Packet

Connection Established

Read Response Packet

attsWriteCback()

AttsHandleValueInd()

Write Request Packet

Write Response Packet

Handle Value Indication Packet

Handle Value Confirmation Packet
ATTS_HANDLE_VALUE_CNF

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 45

Confidential

Figure 5. Server operations

9.2 Client operations

Figure 6 shows some example client operations.

1. First, a connection is established with an attribute protocol server on a peer device.

a. The application initiates a request by calling AttcReadByGroupTypeReq() with

the continuing parameter set to TRUE.

b. The client sends an attribute protocol read by group type request, receives a

response and executes the ATT callback with event

ATTC_READ_BY_GROUP_TYPE_RSP. Since the read by group type procedure is not

complete the client automatically sends another read by group type request packet

to continue the procedure.

c. When the procedure is complete the ATT callback is executed with event

ATTC_READ_BY_GROUP_TYPE_RSP and the continuing parameter set to FALSE.

2. Next the application sends another request by calling AttcReadByTypeReq().

a. The stack sends a read by type request packet, receives a response, and executes

the ATT callback with event ATTC_READ_BY_TYPE_RSP.

b. In this example the procedure is complete in the first packet transaction and the

continuing parameter is set to FALSE.

3. Finally, the application writes a attribute by calling AttcWriteCmd().

a. The stack sends a write command packet. This packet does not have a

corresponding response packet.

b. When the stack has sent the packet it executes the ATT callback with event

ATTC_WRITE_CMD_RSP.

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 46

Confidential

Figure 6. Client operations

9.3 Client prepare and execute write

Figure 7 shows an example prepare and execute write procedure.

1. The application calls AttcPrepareWriteReq() to write an attribute value.

2. The stack sends prepare write request packets until all the data has been sent to the peer

device.

3. The ATT callback is executed with event ATTC_PREPARE_WRITE_RSP each time a

response packet is received.

4. When callback event parameter continuing is set to FALSE, the procedure is complete.

5. Next the application calls AttcExecuteWriteReq() to execute the write procedure in the

peer device's attribute server.

6. The stack sends and execute write request packet.

7. When it receives a response it executes the ATT callback with event

ATTC_EXECUTE_WRITE_RSP.

Application Stack Peer Device

Connection Established

AttcReadByGroupTypeReq()

continuing=TRUE
Read By Group Type Request Packet

Read By Group Type Response Packet ATTC_READ_BY_GROUP_TYPE_RSP

continuing=TRUE

Read By Group Type Request Packet

Read By Group Type Response Packet ATTC_READ_BY_GROUP_TYPE_RSP

continuing=FALSE

AttcReadByTypeReq()

continuing=TRUE
Read By Type Request Packet

Read By Type Response Packet ATTC_READ_BY_TYPE_RSP

continuing=FALSE

AttcWriteCmd()
Write Command Packet

ATTC_WRITE_CMD_RSP

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 47

Confidential

Figure 7. Client prepare and execute write

9.4 Client discovery and configuration

Figure 8 shows and example of discovery and configuration using the ATT client discovery API.

1. First, service discovery is initiated by calling AttcDiscService() with the UUID of the

service to be discovered.

2. The ATT callback is executed with event ATTC_FIND_BY_TYPE_VALUE_RSP containing

discovery results.

3. The callback message is passed to function AttcDiscServiceCmpl(), which returns

ATT_SUCCESS indicating that service discovery completed successfully.

4. Then the application proceeds with characteristic discovery by calling

AttcDiscCharStart().

5. The ATT callback is executed with event ATTC_READ_BY_TYPE_RSP containing

characteristic discovery results.

6. The callback message is passed to function AttcDiscCharCmpl(), which returns

ATT_CONTINUING indicating that characteristic discovery is continuing. This procedure

repeats until AttcDiscCharCmpl() returns ATT_SUCCESS indicating that characteristic

discovery completed successfully.

7. Then the application proceeds with characteristic configuration by calling

Application Stack Peer Device

Connection Established

AttcPrepareWriteReq ()

continuing=TRUE
Prepare Write Request Packet

Prepare Write Response Packet ATTC_PREPARE_WRITE_RSP

continuing=TRUE

ATTC_PREPARE_WRITE_RSP

continuing=FALSE

AttcExecuteWriteReq()

writeAll=TRUE
Execute Write Request Packet

Execute Write Response Packet
ATTC_EXECUTE_WRITE_RSP

Prepare Write Request Packet

Prepare Write Response Packet

Attribute Protocol API

Copyright  2009-2016 ARM. All rights reserved. Page 48

Confidential

AttcDiscConfigStart(). A characteristic read or write is performed according to the

contents of the configuration characteristic list, and the ATT callback is executed.

8. The callback message is passed to function AttcDiscConfigCmpl(), which returns

ATT_CONTINUING indicating that configuration is not complete. The procedure repeats

until AttcDiscConfigCmpl() returns ATT_SUCCESS.

Figure 8. Client discovery and configuration procedures

Application Stack

Connection Established

AttcDiscService()

ATTC_FIND_BY_TYPE_VALUE_RSP

AttcDiscServiceCmpl()

returns ATT_SUCCESS

AttcDiscCharStart()

ATTC_READ_BY_TYPE_RSP

AttcDiscCharCmpl()

returns ATT_CONTINUING

ATTC_READ_BY_TYPE_RSP

AttcDiscCharCmpl()

returns ATT_CONTINUING

ATTC_READ_BY_TYPE_RSP

AttcDiscCharCmpl()

returns ATT_SUCCESS

AttcDiscConfigStart()

ATTC_READ_RSP

AttcDiscConfigCmpl()

returns ATT_CONTINUING

ATTC_WRITE_RSP

AttcDiscServiceCmpl()

returns ATT_SUCCESS

