APOLLO3 PORTING
GUIDE

Apollo3 Porting Guide 1p0 Page 0 of 22 ©2018 Ambig Micro, Inc.
All rights reserved.

Contents

I O 1Y 1= = PSP TPRPPPPRPN 4
I O 1Y IS IR 4= To 1S3 =1 gl LY] 71T o F PR 4
I T O [o110 g ¢ I DTV Z=T Y PSR P U 4
4. HAL Status RETUIMN VAIUBS ...ttt ettt e e e e e sttt e et e e e e e e nn b e beeeeeee s s annbaeeeeeaeeseanntneeeeas 5
TR o VA I @] o} ioT g Fo Y AN o I 2= 11T -1 1o o PR 5
T B O 1 PP 5
6.1 (0] 01 1o U] £=1 1o o T PP PP PP PP PUPRPP P 5
6.2 O 01=T =110 o H O PP P PP PP PTPRPPPP 6
6.3 LT =T U] o] £ T PP PUPPPPRPTTNN 6
6.4 DY £ W\ (01T 0 1T o TSP PPPTTT TR 6
A O I 1Y 1 =1 1 o SO 6
7.1 (€1 10] o F= LN = o= o =P RSRPR 6
7.2 AUXIHTAIY CONFIQUIATIONitiiee ittt ettt e et e e e st b e e e e sabb e e e e sabbe e e e abbeeeesbreeeeane 6
7.3 OULPUL CONTIOL s 7
. J €1 = [N 1 A SO 8
8.1 CONTIGUIALION ... s 8
8.2 OPEIFALION ... s 10
8.3 INEEITUPE FUNCHIONS .ttt ettt e sttt e e s bttt e s bt et e e s bt e e e e bbbe e e s nnnneee s 11
8.4 GPIO Read ANd WILE IMBCIOSccoiiiiiiiiiiiieiee e ettt ettt et e e e et e e e e e e e s s bbb b e e e e e e e e s anbnbreeeaaeaeas 12
8.5 Create the DSP_PINS.SIC ileeiii e e 12
8.5.1 Creating a.SICTile ..o 12
8.5.2 Build new pin files from the .SIC ... 13
8.6 L= L] [PSP PPPPPPPPt 14
LS T 10 1Y Y PSPPSR 16
9.1 CONTIGUIALION ... s 16
9.2 L@ T01=T =i o] o O PP RPR PSR 16
9.3 LT =T U] 0] £ T PP OPPPPTPTN 16
9.4 DAta IMOVEIMENT ...ttt e e e e ettt e e e e e ettt ta bt e e e e et eeebaa e e e e e et eee bbb e e eeaeeeenbannnes 16
0 TR 0 1 T L USRS 17
101 CONFIQUIALIONuuteieiiiiiiii s 17
O T @ o 1= = 1o PP PUUPRPUPPPPPN 17
F0.3 INEEITUDES ettt s 17
10.4 DAtA MOVEIMENT. .. .uuuiiiiiiiiiiiiiiieiiee s 18
0 O o 19V I L 18
5 R O 0T U= 4o o RPN 18
N @ o 1= = 1o] PSP PRPPPPPPN 18
F1.3 INMEEITUDES ettt s 18
114 DAt8 MOVEIMENT. ...uuiiiiiiiiiiiiiiiii s 18
N YV O I I L RPN 19
R T S I 11Vt B o I PP OUPP PP 20
Apollo3 Porting Guide 1p0 Page 1 of 22 ©2018 Ambiqg Micro, Inc.

All rights reserved.

T4, UART HAL Lttt ettt e e e 4ottt e e e e 1 e e e e et e e e e e 4 e E b ettt e e e e e s e bbb e ettt e e e s e e aa s rnnn e et e e e e aannne 20

I R O o 1o [[= 11 (o] ¢ PP T PP PPPPPPPPPPPPTN 20
I © 7= - 11 o] o RSP 20
G N 1 1 (=T U o] £ PP PR PP POPPPPPPP 20
14,4 DaAta MOVEIMENL.....uuiiiiiiiiiiiiiii s 20
Apollo3 Porting Guide 1p0 Page 2 of 22 ©2018 Ambiqg Micro, Inc.

All rights reserved.

Revision History
[Date [Revision[History — Reviser |

Sept 1, 2018 0.1 Initial Version DM
Sept 10, 2018 0.2 Updates DM
Sept 14, 2018 0.3 Fast GPIO RH
Apollo3 Porting Guide 1p0 Page 3 of 22 ©2018 Ambig Micro, Inc.

All rights reserved.

1. Overview

This document is a guide to porting applications from the Apollo/Apollo2 SDK to the Apollo3 SDK. The Apollo3
SDK is a step towards incorporating more industry standard features into the AmbiqSuite. Specifically, the Apollo3
SDK supports:

e CMSIS standard register definitions, interrupt vectors, and intrinsics
e Uniform device driver model for communications APIs
e Consistent error checking and error code returns

e Device instances associated with device handle

2. CMSIS Register Definitions

The Apollo3 SDK supports the Cortex Microcontroller Software Interface Standard or CMSIS. Among other things,
CMSIS defines a standard syntax for exposing MCU register definitions to software, interrupt vector naming and
intrinsic function exposure. The Apollo SDK will deprecate the AM_REG (Ambiqg Micro Register) macros at the
production release of the SDK. Any code from Apollo/Apollo2 implementations that directly use registers will need
to port to the CMSIS standard.

3. Uniform Driver API

The majority of industry Cortex-M SDK implementations provide some level of commonality between similar
devices (12C, I12S, SPI, CAN, and UART). The Apollo/Apollo2 SDK organically grew the specific HAL device APIs
based on the underlying features of the hardware and the need for efficient operation to demonstrate low-power.
While this is necessary, it complicates the support model for many new customers as they need to learn the
approach to each of these device APIs from scratch. The Uniform Device API is designed to establish a uniform
set of APIs and requirement on the ADC, BLE, IOM, IOS, MSPI, PDM and UART devices in the Apollo3 MCU.
These uniform APIs include the following generic functions:

e initialize — creates an instance of the given device interface and returns a handle to the instance for use

with all other APlIs.
e power_control — provides a consistent interface to power-up and sleep the device (typically a device
cannot be configured without first calling power_control).

¢ configure — configures the entire device or a subset of the device resources (there can be multiple
configure functions depending how the device provides resources).
enable — enables a configured device to begin operation
control — provides the ability to configure less used parameters or modes of the device
interrupt_enable — enable one or more interrupts from the device.
interrupt_disable - disable one or more interrupts from the device.
interrupt_status_get — retrieve the current interrupts registered with the device.
interrupt_clear — clear one or more interrupts from the device.
interrupt_service — service an interrupt from the device.
disable — disables a configured device to stop operation
deinitialize — resets and returns a device instance

Not all devices require the full set as outlined above, but they do follow the same general pattern for initialization
and shutdown. The differences are primarily in the calls made during operation of the device.

Apollo3 Porting Guide 1p0 Page 4 of 22 ©2018 Ambiqg Micro, Inc.
All rights reserved.

4. HAL Status Return Values

There is a generic set of return values that is used by all HAL routines included in am_hal_status.h. In some cases
these values are extended for driver specific error codes. These values are:

//
// Global Status Returns
//
typedef enum
{
AM HAL STATUS SUCCESS,
AM HAL STATUS FAIL,
AM HAL STATUS INVALID HANDLE,
AM HAL STATUS IN USE,
AM HAL STATUS TIMEOUT,
AM HAL STATUS OUT OF RANGE,
AM HAL STATUS INVALID ARG,
AM HAL STATUS_ INVALID OPERATION,
AM HAL STATUS MEM ERR,
AM HAL STATUS HW ERR,
AM HAL STATUS MODULE SPECIFIC_START = 0x08000000,
} am_hal status_e;

5. HAL Optional API Validation

Several of the HAL drivers include optional code to validate parameters passed to the functions. While this code
provides for additional error checking it also may cost efficiency. This code may be disabled by defining
AM_HAL_DISABLE_API_VALIDATION in the compiled project.

6. ADC HAL

6.1 Configuration

All of the selectable configuration structures have been converted into enums instead of #defines for value
definitions to aid in compile-time type safety. For example:

#define AM HAL ADC LPMODE 0 AM REG ADC_CFG_LPMODE MODEO
#define AM HAL ADC LPMODE 1 AM REG_ADC_CFG_LPMODE MODEL

typedef enum
{
AM HAL ADC LPMODEO, // Low Latency Clock Mode. When set, HFRC and the adc_clk
// will remain on while in functioning in LPMODEO.
AM HAL ADC LPMODE1 // Powers down all circuity and clocks associated with the
// ADC until the next trigger event. Between scans, the reference
// buffer requires up to 50us of delay from a scan trigger event
// before the conversion will commence while operating in this mode.
} am hal adc lpmode e;

Configuration of the ADC device can be mapped as follows:

Apollo/Apollo2 Function Apollo3 Function |
N/A am_hal adc initialize
N/A am_hal_adc_power_control
am_hal_adc_config am_hal_adc_configure
am_hal adc_window_set am_hal_adc_control(AM_HAL_ADC_REQ_WINDOW_CONFIG)
am_hal_adc_slot_config am_hal_adc_configure_slot
N/A am_hal_adc_configure_dma
N/A am_hal adc_deinitialize
Apollo3 Porting Guide 1p0 Page 5 of 22 ©2018 Ambiqg Micro, Inc.

All rights reserved.

6.2 Operation

Operation of the ADC device can be mapped as follows:
Apollo/Apollo2 Function Apollo3 Function

am_hal _adc _enable am_hal adc_enable
am_hal adc disable am_hal adc disable
N/A am_hal adc status _get
am_hal _adc_trigger am_hal adc_sw_trigger

6.3 Interrupts

Interrupt control of the ADC device can be mapped as follows:
Apollo/Apollo2 Function Apollo3 Function

am_hal adc_int_enable am_hal _adc_interrupt _enable
am_hal _adc_int disable am_hal adc_interrupt disable
am_hal_adc_int_status_get am_hal_adc_interrupt_status
am_hal _adc_int clear am_hal adc_interrupt clear

6.4 Data Movement

Apollo3 implements DMA to support the ADC device. With DMA the samples are transferred directly to SRAM
and an interrupt is generated when the total number of samples is collected.

Raw data movement of the ADC device can be mapped as follows:

Apollo/Apollo2 Function Apollo3 Function

am_hal_adc_fifo_peek am_hal_adc_samples_read
am_hal_adc_fifo_pop am_hal_adc_samples_read

7. CTIMER HAL
7.1 Global Enable

There is a new function that allows synchronized start of all of the CTIMERSs. This overrides the individual
enables of the CTIMERSs and is designed to be used with the new stepper motor/pattern generation features of
the CTIMER. The default is for all the timers to be enabled.

Apollo3 Function
am_hal ctimer_globen

7.2 Auxiliary Configuration

There are two additional functions that allow setting the new AUX registers. These are mostly designed to be
used with the new stepper motor/pattern generation features of the CTIMER.

Apollo3 Function

am_hal ctimer_aux read
am_hal_ctimer_aux_compare_set
am_hal_ctimer_aux_period_set

Apollo3 Porting Guide 1p0 Page 6 of 22 ©2018 Ambig Micro, Inc.
All rights reserved.

7.3 Output Control

There is a new function which provides for coordinate routing of the new CTIMER output signal scheme to 1/0
pads. The function enforces the restrictions on the pad connectivity. Itis recommended that the customer study
the tables in the function implementation and the datasheet to get a sense for these restrictions.

Apollo3 Function
am_hal ctimer_output_config

Apollo3 Porting Guide 1p0 Page 7 of 22 ©2018 Ambiqg Micro, Inc.
All rights reserved.

8. GPIO HAL

The GPIO HAL implementation for Apollo3 has changed significantly from previous Apollo and Apollo2 SDKs. The
hardware design for Apollo3 GPIO remains very similar to the previous products with a few new features added.
The new GPIO features, however, do add some complexity that the new GPIO HAL makes more manageable for
the user.

The previous software implementation was heavily dependent on macros for configuration and usage, which caused
confusion to end users, especially with pin configuration, and contributed to code size due to the inline coding. The
new implementation abstracts most of the configuration into the HAL with the caller supplying a single word
containing all pin configuration parameters in a single 32-bit word defined by a standard C bitfield structure.

To further simplify pin definition, a tool is provided in order to easily define pin configurations. The pins are described
in an ordinary text file and run through the script to produce compilable C code. See section 8.5 for details.

8.1 Configuration

Apollo/Apollo2 Function Apollo3 Function

am_hal gpio_pin_config am_hal gpio_pinconfig

This function is called when configuring a given pad for its ultimate function. The specified parameters (bfGpioCfg)
are checked for compatibility with the specified pin. Any configuration or parameter errors result in an error return.

The prototype is am_hal_gpio_pinconfig(uint32_t ui32Pin, am_hal_gpio_pincfg_t bfGpioCfg).
The ui32Pin parameter is simply the pin number to be configured.

am_hal_gpio_pincfg_t is a bitfield structure containing the following members:

uFuncSel This is a value from 0-7 which will usually come from am_hal_pin.h.

ePullup Many pads can supply a pullup resistor. For those that do, this member defines the value of that
pullup. It is one of the following enumerations:

//

// Pullup configuration: am hal gpio pincfg t.ePullup enums

//

typedef enum
{

// Define pullup enums.
// The 1.5K - 24K pullup values are valid for select I2C enabled pads.
// The "weak" value is used for almost every other pad except pin 20.

AM HAL GPIO_PIN PULLUP_NONE = 0x00,
AM HAL GPIO PIN PULLUP WEAK,
AM HAL GPIO_PIN PULLUP 1 5K,
AM HAL GPIO_PIN PULLUP 6K,
AM HAL GPIO PIN PULLUP 12K,
AM HAL GPIO PIN PULLUP 24K,
AM HAL GPIO PIN PULLDOWN
} am _hal gpio pullup e;

eGPOutcfg This member is generally used when defining a pad as a GPIO output and defines the output type.
It is one of the following enumerations:

//

// OUTCFG pad configuration: am hal gpio pincfg t.eGPOutcfg enums
// Rpplies only to GPIO configured pins.

// Ultimately maps to GPIOCFG.OUTCFG, bits [2:1].

//

typedef enum

{

Apollo3 Porting Guide 1p0 Page 8 of 22 ©2018 Ambiqg Micro, Inc.
All rights reserved.

AM HAL GPIO PIN OUTCFG DISABLE = 0x0,

AM HAL GPIO PIN OUTCFG PUSHPULL 0x1,

AM HAL GPIO PIN OUTCFG OPENDRAIN 0x2,

AM HAL GPIO PIN OUTCFG TRISTATE = 0x3
} am _hal gpio outcfg e;

eDriveStrength For output configurations, many pads can be configured with various drive strengths. For those
that do, this member defines that and will be one of the following enumerations:

//
// Pad Drive Strength configuration: am hal gpio pincfg t.eDriveStrength enums
//
typedef enum
{
//
// DRIVESTRENGTH is a 2-bit field.
// bit0 maps to bit2 of a PADREG field.
// Dbitl maps to bit0 of an ALTPADCFG field.

//
AM HAL GPIO PIN DRIVESTRENGTH 2MA = 0x0,
AM HAL GPIO PIN DRIVESTRENGTH 4MA = 0xl,
AM HAL GPIO PIN DRIVESTRENGTH 8MA = 0x2,
AM HAL GPIO PIN DRIVESTRENGTH 12MA = 0x3
} am hal gpio drivestrength e;
eGPInput This member is generally used when defining a pad as a GPIO input and defines the input type. It

is one of the following enumerations:

//

// GPIO input configuration: am hal gpio pincfg t.eGPInput enums
// BApplies only to GPIO configured pins!

// Ultimately maps to PADREG.INPEN, bitl.

//

typedef enum

{

AM HAL GPIO PIN INPUT AUTO = 0x0,
AM HAL GPIO_PIN_ INPUT NONE = 0x0,
AM HAL GPIO PIN INPUT ENABLE = 0x1

} am _hal gpio input e;

eGPRdZero This member is generally used when defining a pad as a GPIO input and defines whether the pin
value can be read or if it always reads as zero. Itis one of the following enumerations:

//
// am_hal gpio pincfg t.eGPRdZero
// For GPIO configurations (funcsel=3), the pin value can be read or 0 can be
// forced as the read value.
//
typedef enum
{
AM HAL GPIO_PIN RDZERO READPIN = 0x0,
AM HAL GPIO PIN RDZERO ZERO = 0x1
} am _hal gpio readen e;

elntDir This member is used when interrupts are to be enabled for a pad. It is one of the following
enumerations:

//
// GPIO interrupt direction configuration: am hal gpio pincfg t.eIntDir enums
// Note: Setting INTDIR NONE has the side-effect of disabling being able to
// read a pin - the pin will always read back as 0.
//
typedef enum
{
// Bitl of these values maps to GPIOCFG.INCFG (bO0).
// BitO0 of these values maps to GPIOCFG.INTD (b3).
AM HAL GPIO PIN INTDIR LO2HI = 0x0,

Apollo3 Porting Guide 1p0 Page 9 of 22 ©2018 Ambiqg Micro, Inc.
All rights reserved.

AM HAL GPIO PIN INTDIR HI2LO = 0x1,

AM HAL GPIO PIN INTDIR NONE 0x2,

AM HAL GPIO PIN INTDIR BOTH = 0x3
} am _hal gpio intdir e;

ePowerSw A select number of pins can be configured to source or sink current (see datasheet for which pins
support these functions). For pins that support it, it is one of the following enumerations:

//

// Power Switch configuration: am hal gpio pincfg t.ePowerSw enums

//

typedef enum
{

AM HAL GPIO PIN POWERSW NONE,

AM HAL GPIO PIN POWERSW VDD,

AM HAL GPIO PIN POWERSW VSS,

AM HAL GPIO PIN POWERSW INVALID,
} am_hal gpio powersw e;

ulOMnum This member is used when a pad is defined to be a chip enable and designates the IO Master
number (0-5) or MSPI (6) that the CE is to be used for. Most pads can be configured as a chip
enable with each pad supporting 4 combinations of IOM/MSPI and channel numbers. See the
datasheet for a table of these combinations. This member is always a value of 0-5 or 6.

uNCE This member is used when a pad is defined to be a chip enable and is used in conjunction with
ulOMnum to define the CE number for a particular SPI device. It is always a value of 0-3.

eCEpol This member is used when a pad is defined to be a chip enable and specifies the polarity of the CE
enable. It is one of the following enumerations:

//

// nCE polarity configuration: am hal gpio pincfg t.eCEpol enums

//

typedef enum
{
AM HAL GPIO PIN CEPOL_ACTIVELOW = 0x0,
AM HAL GPIO PIN CEPOL ACTIVEHIGH 0x1
} am _hal gpio cepol e;

8.2 Operation

Apollo/Apollo2 Functions Apollo3 Function
am_hal_gpio_input_bit_read am_hal_gpio_state_read
am_hal_gpio_output_bit_read

am_hal_gpio_enable_bit_get

The new Apollo3 am_hal_gpio_state_read function is used for reading GPIO values.

The prototype is am_hal_gpio_state_read(uint32_t ui32Pin, am_hal_gpio_read_type e eReadType, uint32_t
*pui32ReadState).

ui32Pin is the pin number to be read.

eReadType is one of the following enumerations:

typedef enum

{
AM HAL GPIO INPUT READ,
AM HAL GPIO OUTPUT READ,
AM HAL GPIO ENABLE READ

Apollo3 Porting Guide 1p0 Page 10 of 22 ©2018 Ambiqg Micro, Inc.
All rights reserved.

| } am hal gpio read type e;

pui32ReadState is a pointer to the variable to receive the read value of the pin.

Apollo/Apollo2 Functions Apollo3 Function
am_hal_gpio_out_bit_set am_hal_gpio_state_write
am_hal_gpio_out_bit_clear

am_hal gpio_out_bit toggle

The new Apollo3 am_hal_gpio_state_write function is used for writing GPIO values.

The prototype is am_hal_gpio_state_write(uint32_t ui32Pin, am_hal_gpio_write_type_e eWriteType).

ui32Pin is the pin number to be read.

eWriteType is one of the following enumerations:

typedef enum

{
AM HAL GPIO OUTPUT CLEAR,
AM HAL GPIO OUTPUT SET,
AM HAL GPIO OUTPUT TOGGLE,
AM HAL GPIO OUTPUT TRISTATE DISABLE,
AM HAL GPIO OUTPUT TRISTATE ENABLE,
AM HAL GPIO OUTPUT TRISTATE TOGGLE

} am hal gpio write type e;

8.3 Interrupt functions
As with other peripherals, pins configured as GPIOs can be configured to provide interrupts. The HAL provides

several functions to support this functionality.
Apollo/Apollo2 Functions Apollo3 Function \

am_hal_gpio_int_enable am_hal_gpio_interrupt_enable
am_hal_gpio_int_enable_get

am_hal_gpio_int_disable am_hal_gpio_interrupt_disable
am_hal_gpio_int_clear am_hal_gpio_interrupt_clear
am_hal_gpio_int_set

am_hal_gpio_int_status_get am_hal_gpio_interrupt_status_get
am_hal_gpio_int_service am_hal_gpio_interrupt_service
am_hal_gpio_int_register am_hal_gpio_interrupt_register
am_hal_gpio_int_polarity _bit_get

The am_hal_gpio_interupt_enable function enables the given interrupt(s). Only bits 0-49 are valid in the mask.
The am_hal_gpio_interrupt_disable function disables the given interrupt(s). Only bits 0-49 are valid in the mask.

The am_hal_gpio_interrupt_clear function clears the given interrupt(s). Only bits 0-49 are valid in the mask. This
function is often used in conjunction with am_hal_gpio_interrupt_status_get(), with the returned IntStatus used as
the input to this function.

The am_hal_gpio_interrupt_status_get function returns the current interrupt status. It can return the status of
every interrupt (bEnabledOnly=false) or the status of only those that are enabled (bEnabledOnly=true). The 64bit
variable pointed to be pui64intStatus contains the return status.

The am_hal_gpio_interrupt_service function is an overall service routine for GPIO interrupts. It is called by
am_gpio_isr(), which also calls am_hal_gpio_interrupt_status_get() to use as an input parameter to this function.
The general usage is that the application calls am_hal_gpio_interrupt_register() to register a callback routine that

Apollo3 Porting Guide 1p0 Page 11 of 22 ©2018 Ambiqg Micro, Inc.
All rights reserved.

Apollo3 Porting Guide

this routine will call when the registered interrupt occurs. The application also supplies the main handler,
am_gpio_isr().

The am_hal_gpio_interrupt_register function is call by the application for registering specific handlers to specific
GPIO interrupts.

8.4 GPIO Read and Write Macros

While the primary read and write functions will suffice for virtually all applications, there may be situations where
minimal response time is required. To support these situations a set of macros are provided which provide
minimal inline code for accessing GPIOs.

Advantages to usage of these macros include faster GPIO read or write access times, no function call overhead,
and simple read return values.

Drawbacks to usage of these macros include no error checking, larger resultant code size, no guaranteed
atomicity, and risk to general safety.

The “_read” macros are counterparts to the enumerations used for the am_hal_gpio_state_read() function.

Likewise, the “_set, _clear, _toggle) macros are counterparts to the enumerations used for the
am_hal_gpio_state write() function.

Apollo3 GPIO Macros

am_hal_gpio_input_read(n)

am_hal _gpio_output read(n)
am_hal_gpio_enable_read(n)

am_hal _gpio_output_clear(n)

am_hal _gpio_output_set(n)

am_hal gpio_output toggle(n)

am_hal gpio_output tristate enable(n)
am_hal gpio_output tristate disable(n)
am_hal gpio _output tristate toggle(n)

8.5 Create the bsp_pins.src file

The file bsp_pins.src is a simple text file containing names, keywords, and values that describe each pin. The
text file is subsequently provided as input to a Python script that generates two files: am_bsp_pins.c and
am_bsp_pins.h. These two C files contain each of the pins bitfield structures that are passed along to
am_hal_gpio_pinconfig().

8.5.1 Creating a .src file

Note - the .src file should contain no tab characters (only spaces).
Also, indentation is important. A tab indentation of 4 spaces is recommended.

Each pin entry takes the form:

pin
name = UART TX
desc = This pin is the COM UART transmit pin.
pinnum = 35
Apollo3 Porting Guide 1p0 Page 12 of 22 ©2018 Ambiq Micro, Inc.

All rights reserved.

ambiQ Apollo3 Porting Guide

func_sel AM HAL PIN 35 UARTI1TX
drvstrength = 2

While there are about a dozen keywords (parameters) available, only the parameters required to define a pin
need be included in any particular definition when defined globally. If defined in a local variable (stack), all
unused fields must be specifically set to 0.

The keywords used in the file are:

name The name to be used for the pin. This name will be used as a base for generating
defines. Each pin name must be unique.

desc Optional: A description, if provided, will appear in the generated header file.

funcsel A value 0-7, or the equivalent AM_HAL_PIN_nn_xxxx macro from am_hal_pin.h. Note
that the AM_HAL_PIN_nn_xxxx nomenclature is preferred.

pinnum The pin number for the pin being defined (0-49).

drvstrength One of: 2, 4, 8, or 12. If not provided, 2 is default.

GPOutCfg Typically used if the pin is being defined as GPIO (funcsel 3).
One of: disable, pushpull, opendrain, tristate.
Also acceptable is a value 0-3, or a define.

GPinput Only used if the pin is being defined as GPIO (funcsel=3).
One of: true, false.
GPRdZero One of readpin, zero (or true or false).
intdir One of: none, lo2hi, hi2lo, either.
Note - does not enable any interrupt. Only configures the direction for when it is enabled.
pullup One of: none, 1_5K, 6K, 12K, 24K. Also acceptable is a define (e.g.
AM_HAL_GPIO_PIN_PULLUP_1_5K).
PowerSw One of: VDD or VSS. Also acceptable is a define (e.g.

AM_HAL_GPIO_PIN_POWERSW_VDD).

The following 3 parameters only apply when the pin is being defined as a chip enable, i.e. a CE for a SPI
or MSPI device.
IOMnum The IOM number pertaining to the CE. 0-5 for SPI, 6 for MSPI.
CENum A value from 0-3 representing the chip enable channel number.
Results in a C define of the form:
#define AM_BSP_<name>_CHNL <CEnum>
CEpol Designates the chip enable polarity, active high or active low.
One of: LOW (default) or HIGH.

8.5.2 Build new pin files from the .src

Each bsp directory contains a Makefile that can be used to completely rebuild the BSP by simply typing “make” on
the command line. A rebuild might be required, for instance, if the .src file is updated or if a BSP C function is
modified. The first step of the build process is the creation of the am_bsp_pins.c and am_bsp_pins.h files using
the .src file as input. Once those two files have been created, the Makefile then builds the BSP itself.

Alternatively, the am_bsp_pins.c and am_bsp_pins.h can be manually created by using the script found at
tools/bsp_generator/pinconfig.py. The script must be run twice, once to create the .c file and again to create the
.hfile. The basic command line is:

pinconfig.py bsp_pins.src C >am_bsp_pins.c
pinconfig.py bsp_pins.src H >am_bsp_pins.h

Apollo3 Porting Guide 1p0 Page 13 of 22 ©2018 Ambiq Micro, Inc.
All rights reserved.

ambiQ Apollo3 Porting Guide

8.6 Fast GPIO

The Apollo3 MCU introduced an alternative method of setting and clearing GPIOs, termed Fast GPIO. The set
and clear registers for Fast GPIO operation are architecturally situated near the MCU core (in the APBDMA
named block) such that GPIO accesses can be handled with minimal latency. The Apollo3 HAL supports these
Apollo3 specific functions.

One of the intended usages of Fast GPIO is in “bit-banging” operations for up to 8 bits in parallel, with each pin
controlled with a single bit in the SETCLEAR register. This set/clear methodology imposes a limitation that only
certain pins can be controlled with each bit. That control can be seen in the following matrix (as well as a similar
matrix in am_hal_gpio.h) that relates the control bit to the pins that can be controlled by that bit.

5

PIN controlled by bit
8 [16|24 324048
9 [17 25|33 |41 |49
10 | 18 | 26 | 34 | 42
11119 |27 | 35|43
12 |20 | 28 | 36 | 44
13121 (29|37 |45
14 | 22 | 30 | 38 | 46
15123 |31 |39 |47

N[OOI~ WIN|IFL IO

N[OOI WIN|IFL|O

Fast GPIO pin configuration is similar to normal pin configuration, but a new function is provided to facilitate it.
Further it is recommended that prior to configuring a pin that the state be initialized using
am_hal_gpio_fastgpio_disable() and am_hal_gpio_fastgpio_clr()/set().

The prototype of the Fast GPIO pin configuration function is:
am_hal_gpio_fast_pinconfig(uint64_t ui64PinMask, am_hal_gpio_pincfg_t bfGpioCfg, uint32_t ui32MasksJ]).

Where ui64PinMask is a mask of the pins to be configured.

For the most efficient access, the Fast GPIO implementation is supported by various macros instead of functions.

am_hal_gpio_fastgpio_enable(n) — Typically used after pin configuration to enable fast gpio for the specified pin.
am_hal_gpio_fastgpio_disable(n) — Disable fast gpio on the specified pin.

am_hal_gpio_fastgpio_set(n) — Set the given pin high.

am_hal_gpio_fastgpio_clr(n) — Clear the value on the given pin.

am_hal_gpio_fastgpio_setmsk(n) — Set the given pins high.

am_hal_gpio_fastgpio_clrmsk(n) — Clear the values on the given pins.

am_hal_gpio_fastgpio_wrval(val) — Write a value to all of the Fast GPIO configured pins.

Apollo3 Porting Guide 1p0 Page 14 of 22 ©2018 Ambiq Micro, Inc.
All rights reserved.

ambi an Apollo3 Porting Guide

Finally, note that each specified pin must be on a unique row. Even though this restriction is not strictly enforced
by am_hal_gpio_fast_pinconfig(),

For example, the following call will configure 8 pins, pins 48, 41,34, 27, 20, 13, 6, 15, for output of fast gpio.
am_hal_gpio_fast_pinconfig((uint64_t)0x000102040810A040, g_AM_HAL_GPIO_OUTPUT, 0);

Each pin would then need am_hal_gpio_fastgpio_enable(), after which the set and clr macros could be used.

Note in this example that pin 48 would be controlled by bit0, 41 by bit1, 34 by bit2, 27 by bit3, 20 by bit4, 13 by bit5,
6 by bit6, and 15 by bit 7.

Apollo3 Porting Guide 1p0 Page 15 of 22 ©2018 Ambiq Micro, Inc.
All rights reserved.

ambiQmicrO Apollo3 Porting Guide

9. IOM HAL

The Apollo3 IOM HAL interface has been greatly simplified from Apollo/Apollo2. Support for a wide variety of
blocking, queue, and nonblocking read/write operations has been reduced to just three transfer functions.

9.1 Configuration

All of the selectable configuration structures have been converted into enums instead of #defines for value
definitions to aid in compile-time type safety. Configuration of the IOM device can be mapped as follows:

Apollo/Apollo2 Function Apollo3 Function |
N/A am_hal_iom_initialize

N/A am_hal iom_power_ctrl

am_hal_iom_config am_hal_iom_configure

N/A am_hal_iom_control

N/A am_hal_iom_deinitialize

9.2 Operation

Operation of the IOM device can be mapped as follows:
Apollo/Apollo2 Function Apollo3 Function

am_hal _iom_enable am_hal iom_enable
am_hal iom_disable am_hal iom_disable
am_hal iom_status get am_hal iom_status get
am_hal iom_error_status_get N/A

9.3 Interrupts

Interrupt control of the IOM device can be mapped as follows:
Apollo/Apollo2 Function Apollo3 Function

am_hal iom_int _enable am_hal iom_interrupt _enable
am_hal_iom_int_enable get N/A

am_hal iom _int disable am_hal iom interrupt disable
am_hal iom int status get am_hal iom interrupt status get
am_hal iom int_set N/A

am_hal iom _int clear am_hal iom interrupt clear
am_hal iom_int_service am_hal iom_interrupt_service

9.4 Data Movement

Apollo3 implements DMA to support the IOM devices. With DMA the samples are transferred directly to SRAM
and an interrupt is generated when the total number of samples is collected. In addition, Apollo3 supports a
Command Queue for each IOM device. The Command Queue is used inside the non-blocking transfer function to
provide queued request for DMA transfer.

The data movement of the IOM device can be mapped as follows:

Apollo/Apollo2 Function Apollo3 Function
am_hal_iom_spi_write_nq am_hal_iom_blocking_transfer

am_hal_iom_spi_read _nq
am_hal _iom_i2c_write_nq
am_hal iom i2c read nq
am_hal_iom_spi_write_nb am_hal_iom_nonblocking_transfer
am_hal iom spi read nb

Apollo3 Porting Guide 1p0 Page 16 of 22 ©2018 Ambiq Micro, Inc.
All rights reserved.

ambiQmicrO Apollo3 Porting Guide

am_hal_iom_queue_spi_write
am_hal_iom_queue_spi_read

am_hal_iom_i2c_write_nb

am_hal_iom_i2c_read_nb
am_hal_iom_spi_fullduplex_ng N/A

The Apollo3 IOM HAL data movement operations have been greatly simplified from the Apollo/Apollo2
equivalents. There are essentially two primary transfer functions that can be used for half-duplex send (TX) or
receive (RX) or full-duplex operation. A transfer can be called with either the blocking or nonblocking interface.
The blocking interface returns after the transfer has been completed. The nonblocking interface returns after the
transfer has been scheduled. There is an optional callback that can be supplied to the nonblocking interface to
notify the application when the operation is complete.

10. 10S HAL

The Apollo3 10S HAL interface has been greatly simplified from Apollo/Apollo2. Support for direct LRAM interaction
has been deprecated in preference to the FIFO interface.

10.1Configuration

Configuration of the 10S device can be mapped as follows:

Apollo/Apollo2 Function Apollo3 Function

N/A am_hal _ios initialize
am_hal_ios_pwrctrl_enable am_hal_ios_power_ctrl
am_hal_ios_pwrctrl_disable

am_hal_ios_config am_hal_ios_configure
N/A am_hal_ios_control
N/A am_hal_ios_uninitialize

10.20peration

Operation of the 10S device can be mapped as follows:

Apollo/Apollo2 Function Apollo3 Function
am_hal ios enable am hal ios enable
am_hal ios disable am_hal ios disable

10.3Interrupts

Interrupt control of the 10S device can be mapped as follows:
Apollo/Apollo2 Function Apollo3 Function \

am_hal_ios_host_int_set am_hal_ios_control(AM_HAL_10S_REQ_HOST_INT¥)
am_hal_ios_host_int_clear
am_hal_ios_host_int_get
am_hal ios host _int _enable
N/A
N/A
N/A
am_hal ios access _int _enable N/A
am_hal ios access int enable get N/A
am_hal ios access int disable N/A
am_hal ios access int clear N/A
am_hal ios access _int set N/A
am_hal ios access _int status get N/A
am_hal _ios _int_enable am_hal _ios_interrupt_enable
am_hal ios int disable am_hal ios interupt disable
Apollo3 Porting Guide 1p0 Page 17 of 22 ©2018 Ambiq Micro, Inc.

All rights reserved.

@ambiqmicro Apollo3 Porting Guide

am_hal _ios_int_clear am_hal _ios_interrupt_clear
am_hal _ios_int_set N/A

am_hal ios_int_status get am_hal _ios_interrupt_status_get
am_hal _ios fifo_service am_hal _ios_interrupt_service

10.4 Data Movement

Apollo/Apollo2 Function Apollo3 Function |
am_hal_ios_fifo_space_left am_hal_ios_fifo_space_left

am_hal_ios_fifo_space_used am_hal_ios_fifo_space _used

am_hal_ios_fifo_write am_hal_ios_fifo_write

am_hal_ios_fifo_write_simple N/A

am_hal _ios_fifo_ptr_set N/A

am_hal_ios_update_fifoctr am_hal_ios_control(AM_HAL_IOS_REQ_FIFO_UPDATE_CTRL)
am_hal ios read poll complete am_hal ios control(AM _HAL I0S REQ READ POLL)

am_hal _ios_Iram_write N/A

11. PDM HAL

11.1Configuration

The Apollo2 PDM HAL provided a number of macros to configure individual registers of the PDM block. These
macros have been deprecated. In addition, the Apollo3 HAL follows the practice of using enums and booleans
instead of discrete uint32_t for configuration parameters.

Apollo2 Function Apollo3 Function

N/A am_hal pdm initialize

N/A am_hal_pdm_power_control
am_hal_pdm_config am_hal_pdm_configure

N/A am_hal_pdm_deinitialize

11.20Operation

Apollo2 Function Apollo3 Function
am_hal_pdm_enable am_hal_pdm_enable
am_hal_pdm_disable am_hal_pdm_disable

11.3Interrupts

Apollo2 Function Apollo3 Function \
am_hal_pdm_int_enable am_hal_pdm_interrupt_enable
am_hal_pdm_int_disable am_hal_pdm_interrupt_disable
am_hal_pdm_int_clear am_hal_pdm_interrupt_clear
am_hal_pdm_int_status_get am_hal_pdm_interrupt_status_get

11.4Data Movement

Apollo2 Function Apollo3 Function \
am_hal_pdm_fifo_depth_read N/A
am_hal_pdm_fifo_data read N/A
am_hal_pdm_fifo_flush am_hal _pdm_fifo_flush
Apollo3 Porting Guide 1p0 Page 18 of 22 ©2018 Ambiq Micro, Inc.

All rights reserved.

' ambiQ MIcro Apollo3 Porting Guide

| N/A am _hal pdm_dma_start

12. PWRCTRL HAL

The Apollo3 SDK PWRCTRL is fairly consistent with Apollo/Apollo2 SDK. The biggest difference is the mapping of
peripheral and memory configurations to enums as follows:

typedef enum

{
AM HAL PWRCTRL PERIPH NONE,
AM HAL PWRCTRL_ PERIPH IOS,
AM HAL PWRCTRL PERIPH IOMO,
AM HAL PWRCTRL PERIPH IOM1,
AM HAL PWRCTRL PERIPH IOM2,
AM HAL PWRCTRL PERIPH IOM3,
AM HAL PWRCTRL PERIPH IOM4,
AM HAL PWRCTRL PERIPH_IOMS,
AM HAL PWRCTRL PERIPH_UARTO,
AM HAL PWRCTRL PERIPH UARTI1,
AM HAL PWRCTRL PERIPH ADC,
AM HAL PWRCTRL PERIPH_SCARD,
AM HAL PWRCTRL PERIPH MSPI,
AM HAL PWRCTRL PERIPH PDM,
AM HAL PWRCTRL PERIPH BLEL,
AM HAL PWRCTRL PERIPH MAX

} am_hal pwrctrl periph e;

typedef enum

{
AM HAL_ PWRCTRL MEM NONE,
AM HAL_PWRCTRL_MEM SRAM 8K_DTCM,
AM HAL_PWRCTRL_MEM SRAM 32K_DTCM,
AM HAL PWRCTRL MEM SRAM 64K_DTCM,
AM HAL PWRCTRL MEM SRAM 96K,
AM HAL PWRCTRL MEM SRAM 128K,
AM HAL_ PWRCTRL_MEM SRAM 160K,
AM HAL PWRCTRL_MEM SRAM 192K,
AM HAL PWRCTRL MEM SRAM 224K,
AM HAL PWRCTRL MEM SRAM 256K,
AM HAL PWRCTRL_MEM SRAM 288K,
AM HAL_ PWRCTRL_MEM SRAM 320K,
AM HAL PWRCTRL MEM SRAM 352K,
AM HAL PWRCTRL MEM SRAM 384K,
AM HAL_ PWRCTRL_MEM FLASH 512K,
AM HAL_ PWRCTRL_MEM FLASH 1M,
AM HAL PWRCTRL MEM CACHE,
AM HAL PWRCTRL MEM ALL,
AM HAL_ PWRCTRL_MEM MAX

} am _hal pwrctrl mem e;

The function mappings are almost equivalent.

Apollo2 Function Apollo3 Function

am_hal pwrctrl periph _enable

am_hal pwrctrl periph _enable

am_hal pwrctrl periph disable

am_hal pwrctrl periph disable

N/A

am_hal pwrctrl periph_enabled

am_hal pwrctrl memory enable

am_hal pwrctrl memory enable

am_hal_pwrctrl_bucks_init
am_hal_pwrctrl_bucks_enable
am_hal pwrctrl bucks disable

N/A

am_hal pwrctrl low power init

am_hal pwrctrl low power init

Apollo3 Porting Guide 1p0

Page 19 of 22

©2018 Ambiq Micro, Inc.
All rights reserved.

@ambiqmicro Apollo3 Porting Guide

13. STIMER HAL

The Apollo3 SDK STIMER HAL is 100% compatible with Apollo2, except for the addition of the following functions
to set an read back the 4 32-bit words of NVRAM.

Apollo3 Function
am_hal stimer_nvram_set
am_hal stimer_nvram_get

14. UART HAL

The Apollo3 SDK UART HAL greatly simplifies the HAL API from Apollo/Apollo2 HAL while deprecating the concept
of string/char processing and embedding TX/RX buffering into the HAL.

14.1Configuration

N/A am_hal uart _initialize
am_hal_uart_pwrctrl_enable am_hal_uart_power_control
am_hal_uart_pwrctrl_disable

am_hal_uart_power_on_restore

am_hal_uart_power_off_save

am_hal_uart_config am_hal_uart_configure
am_hal_uart_clock_enable

am_hal_uart_clock_disable

am_hal_uart_fifo_config

am_hal uart_init_buffered

N/A am_hal _uart_deinitialize

14.2Operation
Apollo/Apollo2 Function Apollo3 Function \

am_hal uart_enable N/A
am_hal uart disable N/A

14.3Interrupts
Apollo/Apollo2 Function Apollo3 Function |

am_hal uart_int_enable am_hal uart_interrupt_enable
am_hal uart_int_disable am_hal uart_interrupt_disable
am_hal uart_int _clear am_hal uart_interrupt clear
am_hal uart _int _status get am_hal uart_interrupt_status get
am_hal_uart_service_buffered am_hal_uart_interrupt_service
am_hal uart _service buffered timeout save

am_hal_uart_int_enable get N/A

14.4Data Movement

Apollo/Apollo2 Function Apollo3 Function
am_hal_uart_char_transmit_polled am_hal uart _transfer
Apollo3 Porting Guide 1p0 Page 20 of 22 ©2018 Ambiq Micro, Inc.

All rights reserved.

amb|Q micrO Apollo3 Porting Guide

am_hal_uart_string_transmit_polled

am_hal_uart_char_receive_polled

am_hal_uart_line_receive_polled

am_hal_uart_char_transmit_buffered
am_hal_uart_string_transmit_buffered

am_hal uart char receive buffered

N/A am_hal_uart_tx_flush
am_hal_uart_flags_get am_hal_uart_flags_get
am_hal_uart_status_get

am_hal uart get status buffered

Apollo3 Porting Guide 1p0 Page 21 of 22 ©2018 Ambiq Micro, Inc.
All rights reserved.

ambiQ ' i Apollo3 Porting Guide

Contact Information

Address Ambiq Micro, Inc.
6500 River Place Blvd.
Building 7, Suite 200
Austin, TX 78730

Phone +1 (512) 879-2850
Website http://www.ambigmicro.com
General Information info@ambigmicro.com
Sales sales@ambigmicro.com

Technical Support support@ambigmicro.com

Legal Information and Disclaimers

AMBIQ MICRO INTENDS FOR THE CONTENT CONTAINED IN THE DOCUMENT TO BE ACCURATE AND RELIABLE. THIS
CONTENT MAY, HOWEVER, CONTAIN TECHNICAL INACCURACIES, TYPOGRAPHICAL ERRORS OR OTHER MISTAKES.
AMBIQ MICRO MAY MAKE CORRECTIONS OR OTHER CHANGES TO THIS CONTENT AT ANY TIME. AMBIQ MICRO AND ITS
SUPPLIERS RESERVE THE RIGHT TO MAKE CORRECTIONS, MODIFICATIONS, ENHANCEMENTS, IMPROVEMENTS AND
OTHER CHANGES TO ITS PRODUCTS, PROGRAMS AND SERVICES AT ANY TIME OR TO DISCONTINUE ANY PRODUCTS,
PROGRAMS, OR SERVICES WITHOUT NOTICE.

THE CONTENT IN THIS DOCUMENT IS PROVIDED "AS IS". AMBIQ MICRO AND ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THIS CONTENT FOR ANY PURPOSE AND DISCLAIM ALL WARRANTIES
AND CONDITIONS WITH REGARD TO THIS CONTENT, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES AND
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT OF ANY
THIRD PARTY INTELLECTUAL PROPERTY RIGHT.

AMBIQ MICRO DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED
UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF AMBIQ
MICRO COVERING OR RELATING TO THIS CONTENT OR ANY COMBINATION, MACHINE, OR PROCESS TO WHICH THIS
CONTENT RELATE OR WITH WHICH THIS CONTENT MAY BE USED.

USE OF THE INFORMATION IN THIS DOCUMENT MAY REQUIRE A LICENSE FROM A THIRD PARTY UNDER THE PATENTS
OR OTHER INTELLECTUAL PROPERTY OF THAT THIRD PARTY, OR A LICENSE FROM AMBIQ MICRO UNDER THE
PATENTS OR OTHER INTELLECTUAL PROPERTY OF AMBIQ MICRO.

INFORMATION IN THIS DOCUMENT IS PROVIDED SOLELY TO ENABLE SYSTEM AND SOFTWARE IMPLEMENTERS TO
USE AMBIQ MICRO PRODUCTS. THERE ARE NO EXPRESS OR IMPLIED COPYRIGHT LICENSES GRANTED HEREUNDER
TO DESIGN OR FABRICATE ANY INTEGRATED CIRCUITS OR INTEGRATED CIRCUITS BASED ON THE INFORMATION IN
THIS DOCUMENT. AMBIQ MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN. AMBIQ MICRO MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE
SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES AMBIQ MICRO ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT, AND SPECIFICALLY DISCLAIMS ANY AND
ALL LIABILITY, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR INCIDENTAL DAMAGES. “TYPICAL” PARAMETERS
WHICH MAY BE PROVIDED IN AMBIQ MICRO DATA SHEETS AND/OR SPECIFICATIONS CAN AND DO VARY IN DIFFERENT
APPLICATIONS AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL OPERATING PARAMETERS, INCLUDING
“TYPICALS” MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUSTOMER'’S TECHNICAL EXPERTS. AMBIQ
MICRO DOES NOT CONVEY ANY LICENSE UNDER NEITHER ITS PATENT RIGHTS NOR THE RIGHTS OF OTHERS. AMBIQ
MICRO PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS COMPONENTS IN SYSTEMS
INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS INTENDED TO SUPPORT OR SUSTAIN
LIFE, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE AMBIQ MICRO PRODUCT COULD CREATE A
SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. SHOULD BUYER PURCHASE OR USE AMBIQ MICRO
PRODUCTS FOR ANY SUCH UNINTENDED OR UNAUTHORIZED APPLICATION, BUYER SHALL INDEMNIFY AND HOLD
AMBIQ MICRO AND ITS OFFICERS, EMPLOYEES, SUBSIDIARIES, AFFILIATES, AND DISTRIBUTORS HARMLESS AGAINST
ALL CLAIMS, COSTS, DAMAGES, AND EXPENSES, AND REASONABLE ATTORNEY FEES ARISING OUT OF, DIRECTLY OR
INDIRECTLY, ANY CLAIM OF PERSONAL INJURY OR DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED
USE, EVEN IF SUCH CLAIM ALLEGES THAT AMBIQ MICRO WAS NEGLIGENT REGARDING THE DESIGN OR
MANUFACTURE OF THE PART.

Apollo3 Porting Guide 1p0 Page 22 of 22 ©2018 Ambiq Micro, Inc.
All rights reserved.

http://www.ambiqmicro.com/
mailto:info@ambiqmicro.com
mailto:sales@ambiqmicro.com
mailto:support@ambiqmicro.com

