
Apollo MCU Multi-Protocol Bootloader
Ultra-Low Power Apollo MCU Family
A-MCUAP3-ANGA02EN v1.0

APPLICATION NOTE

Apollo MCU Multi-Protocol Bootloader Application Note

A-MCUAP3-ANGA02EN v1.0 2 Confidential and Proprietary

Legal Information and Disclaimers

AMBIQ MICRO INTENDS FOR THE CONTENT CONTAINED IN THE DOCUMENT TO BE ACCURATE AND RELIABLE. THIS
CONTENT MAY, HOWEVER, CONTAIN TECHNICAL INACCURACIES, TYPOGRAPHICAL ERRORS OR OTHER MISTAKES.
AMBIQ MICRO MAY MAKE CORRECTIONS OR OTHER CHANGES TO THIS CONTENT AT ANY TIME. AMBIQ MICRO
AND ITS SUPPLIERS RESERVE THE RIGHT TO MAKE CORRECTIONS, MODIFICATIONS, ENHANCEMENTS,
IMPROVEMENTS AND OTHER CHANGES TO ITS PRODUCTS, PROGRAMS AND SERVICES AT ANY TIME OR TO
DISCONTINUE ANY PRODUCTS, PROGRAMS, OR SERVICES WITHOUT NOTICE.

THE CONTENT IN THIS DOCUMENT IS PROVIDED "AS IS". AMBIQ MICRO AND ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THIS CONTENT FOR ANY PURPOSE AND DISCLAIM ALL
WARRANTIES AND CONDITIONS WITH REGARD TO THIS CONTENT, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED
WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-
INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT.

AMBIQ MICRO DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED
UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF
AMBIQ MICRO COVERING OR RELATING TO THIS CONTENT OR ANY COMBINATION, MACHINE, OR PROCESS TO
WHICH THIS CONTENT RELATE OR WITH WHICH THIS CONTENT MAY BE USED.

USE OF THE INFORMATION IN THIS DOCUMENT MAY REQUIRE A LICENSE FROM A THIRD PARTY UNDER THE
PATENTS OR OTHER INTELLECTUAL PROPERTY OF THAT THIRD PARTY, OR A LICENSE FROM AMBIQ MICRO UNDER
THE PATENTS OR OTHER INTELLECTUAL PROPERTY OF AMBIQ MICRO.

INFORMATION IN THIS DOCUMENT IS PROVIDED SOLELY TO ENABLE SYSTEM AND SOFTWARE IMPLEMENTERS TO
USE AMBIQ MICRO PRODUCTS. THERE ARE NO EXPRESS OR IMPLIED COPYRIGHT LICENSES GRANTED HEREUNDER
TO DESIGN OR FABRICATE ANY INTEGRATED CIRCUITS OR INTEGRATED CIRCUITS BASED ON THE INFORMATION IN
THIS DOCUMENT. AMBIQ MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN. AMBIQ MICRO MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE
SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES AMBIQ MICRO ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT, AND SPECIFICALLY DISCLAIMS ANY
AND ALL LIABILITY, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR INCIDENTAL DAMAGES. “TYPICAL”
PARAMETERS WHICH MAY BE PROVIDED IN AMBIQ MICRO DATA SHEETS AND/OR SPECIFICATIONS CAN AND DO
VARY IN DIFFERENT APPLICATIONS AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL OPERATING
PARAMETERS, INCLUDING “TYPICALS” MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUSTOMER’S
TECHNICAL EXPERTS. AMBIQ MICRO DOES NOT CONVEY ANY LICENSE UNDER NEITHER ITS PATENT RIGHTS NOR
THE RIGHTS OF OTHERS. AMBIQ MICRO PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS
COMPONENTS IN SYSTEMS INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS
INTENDED TO SUPPORT OR SUSTAIN LIFE, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE
AMBIQ MICRO PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
SHOULD BUYER PURCHASE OR USE AMBIQ MICRO PRODUCTS FOR ANY SUCH UNINTENDED OR UNAUTHORIZED
APPLICATION, BUYER SHALL INDEMNIFY AND HOLD AMBIQ MICRO AND ITS OFFICERS, EMPLOYEES, SUBSIDIARIES,
AFFILIATES, AND DISTRIBUTORS HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND EXPENSES, AND
REASONABLE ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY OR
DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED USE, EVEN IF SUCH CLAIM ALLEGES THAT
AMBIQ MICRO WAS NEGLIGENT REGARDING THE DESIGN OR MANUFACTURE OF THE PART.

Apollo MCU Multi-Protocol Bootloader Application Note

A-MCUAP3-ANGA02EN v1.0 3 Confidential and Proprietary

Revision History

Reference Documents

Revision Date Description

1.0 April 12, 2022 Initial release

Document ID Description

Apollo MCU Multi-Protocol Bootloader Application Note Table of Contents

A-MCUAP3-ANGA02EN v1.0 4 Confidential and Proprietary

Table of Contents

1. Introduction ... 8

2. Memory Map .. 9

3. Verification of Flash-Resident Image ... 10

4. Image Update ... 12
4.1 SPI Boot Protocol ... 12

4.1.1 SPI Command Format .. 12
4.2 I2C Boot Protocol ... 13

4.2.1 I2C Command Format .. 13
4.3 UART Boot Protocol .. 14

4.3.1 UART Command Format ... 14
4.4 Supported Commands .. 14

4.4.1 Command 0x00000000: ACK ... 14
4.4.2 Command 0x00000002: New Image .. 14
4.4.3 Command 0x00000003: New Data Packet ... 15
4.4.4 Command 0x00000004: Reset and Run .. 15
4.4.5 Command 0x00000005: Set Override Pin ... 16
4.4.6 Command 0x00000006: Bootloader Version ... 16

4.5 Response Formats ... 16
4.5.1 Supported Slave Responses ... 17

4.6 Pin Configuration for Connectivity with Host ... 17
4.7 Override Pin and the Protocol Selection ... 18

5. Boot Procedure .. 19
5.1 Multi-Segment Images .. 19

6. Secure Image Upgrade .. 20
6.1 Customizable Security Functions .. 21

6.1.1 Initialization ... 21
6.1.2 Decryption ... 21
6.1.3 Verification ... 22

7. Over the Air (OTA) Upgrade .. 23

Apollo MCU Multi-Protocol Bootloader Application Note Table of Contents

A-MCUAP3-ANGA02EN v1.0 5 Confidential and Proprietary

8. Multiboot Customization .. 25
8.1 Compile Time Constants .. 26
8.2 Helper Functions ... 27

8.2.1 Check for Override Status and Flash Image Validity ... 27
8.2.2 Run Image .. 27

8.3 Image Upgrade Over IOS/UART ... 28
8.3.1 Initialize Multiboot .. 28
8.3.2 Upgrade Over IOS .. 28

8.3.2.1 Setup IOS Interface ... 28
8.3.2.2 Cleanup IOS Interface .. 28
8.3.2.3 IOS Interrupt Handler ... 29

8.3.3 Image Upgrade Over UART .. 29
8.3.3.1 AutoDetect Baudrate ... 29
8.3.3.2 Setup Serial Interface ... 29
8.3.3.3 UART Interrupt Handler .. 29

8.4 OTA Image Upgrade ... 30
8.4.1 External Flash Access Hooks .. 30
8.4.2 OTA Upgrade Helper Function ... 31

9. Appendix .. 33
9.1 Downloading a New Image Using Multi-Protocol Bootloader Supplied
 with AmbiqSuite .. 33

9.1.1 Multi-Boot ... 33
9.1.2 Image Upgrade Over I2C/SPI Using Another Ambiq Evaluation Board 34
9.1.3 Image Upgrade Over UART .. 35
9.1.4 Secure Boot .. 35

I2C/SPI Boot Loader Application Note List of Tables

A-MCUAP3-ANGA02EN v1.0 6 Confidential and Proprietary

List of Tables

Table 4-1 New Image Parameters ... 15
Table 4-2 New Data Packet Parameters .. 15
Table 4-3 Set Override Pin Parameters .. 16
Table 4-4 Supported Slave Responses ... 17
Table 4-5 Pins Used for the I2C/SPI Slave Operation .. 17
Table 4-6 Options for Configuring the Pads .. 18
Table 6-1 Secure Image Upgrade .. 20
Table 6-2 Initialization Parameter Description ... 21
Table 6-3 Decryption Parameter Description ... 22
Table 6-4 Verification Parameter Description ... 22
Table 8-1 Check for Override Status and Flash Image Parameter Description 27
Table 8-2 Run Image Parameter Description .. 27
Table 8-3 Initialize Multiboot Parameter Description .. 28
Table 8-4 Setup IOS Interface Parameter Description ... 28
Table 8-5 Setup Serial Interface Parameter Description ... 29
Table 8-6 UART Interrupt Handler Parameter Description ... 30
Table 8-7 OTA Upgrade Helper Function Parameter Description ... 31

Apollo MCU Multi-Protocol Bootloader Application Note List of Figures

A-MCUAP3-ANGA02EN v1.0 7 Confidential and Proprietary

List of Figures

Figure 2-1 Flash Memory Map .. 9
Figure 3-1 Flag Page Contents ... 10
Figure 4-1 Parameter Frame .. 13
Figure 4-2 Command Frame ... 13
Figure 4-3 I2C Command Format .. 14
Figure 4-4 UART Command Format ... 14
Figure 4-5 SPI Slave Message Followed by a Host ACK Frame ... 16
Figure 4-6 I2C Slave Message ... 17

Confidential and Proprietary 8 A-MCUAP3-ANGA02EN v1.0

SECTION

1 Introduction

The Multi-Protocol Bootloader itself is a simple program that resides in the first few pages of
flash memory. It runs on power-up or on any reset event, and checks to see if there is a valid
application to run. If it finds one, it will run that application. If notor if a host processor requests
a forced update—it will listen for a new binary image over SPI, I2C, or UART, and proceed to
update the internal flash with the new application.

The multi-protocol bootloader functionality can be primarily categorized into the following:

Verification and Execution of the flash-resident image

Verifying the integrity of the main program image in the flash. It protects against image
corruption or tampering. Also, it could optionally be used to authenticate the image with a
secure version of bootloader.

At the end of the boot process, the multi-protocol bootloader configures the system to run
the verified image.

Image upgrade

In many cases, users of Ambiq’s microcontrollers will need to update a program in internal
flash memory without using the standard SWD interface. Often, this is to solve the problem
of field updates or programming assembled boards in a production environment. The
Multi-Protocol Bootloader described in this document provides a way for a host processor
to update the program in an Apollo or Apollo2 device.

Multiboot can also be built to support Over the Air image upgrade. This is detailed in Sec-
tion 7 Over the Air (OTA) Upgrade on page 23.

Confidential and Proprietary 9 A-MCUAP3-ANGA02EN v1.0

SECTION

 2 Memory Map

Figure 2-1 is a description of the basic memory map used by the bootloader:

Figure 2-1: Flash Memory Map

As shown in the diagram above, the bootloader consumes the first few KB of flash memory.
One flash page, called the Flag Page, is reserved for dedicated use by the bootloader to keep
necessary information used to validate the flash resident main image. Rest of the flash is avail-
able for the main application image (and other third party images, if needed) to use.

Note that Flag page could be located anywhere in the flash, and need not be immediately after
bootloader.

Confidential and Proprietary 10 A-MCUAP3-ANGA02EN v1.0

SECTION

3 Verification of Flash-Resident
Image

Once the bootloader has been programmed into flash, it is ready to talk to a host processor and
download a new application. When it does this, the bootloader will store some information
about the application in the Flag Page, including the starting address, the length, and a CRC
value. The default location for the Flag Page is 0x00004000, but the bootloader can be recom-
piled to place the flag page in any location.

The exact contents of the Flag Page are shown in Figure 3-1:

Figure 3-1: Flag Page Contents

Apollo MCU Multi-Protocol Bootloader Application Note Verification of Flash-Resident Image

Confidential and Proprietary 11 A-MCUAP3-ANGA02EN v1.0

As shown here, the Flag Page structure is only 9 words long. It contains just enough informa-
tion to find the downloaded application, verify its integrity, and run it. Field bEncrypted is a
place holder for secure bootloader, where it is used to tell the bootloader program about the
flash protection features in effect for the image. This feature is not currently implemented.

The flag page is entirely operated by the bootloader and shouldn’t require any interaction from
the user application.

When programming the flag page in the flash, the bootloader also updates a 4 byte CRC value
in the last 4 bytes. The same is verified by the bootloader to assure integrity of the flag page
before using the contents therein.

Confidential and Proprietary 12 A-MCUAP3-ANGA02EN v1.0

SECTION

4 Image Update

The following sections explain how to use the bootloader to perform updates of the main
application components. The main image can be updated two different ways:

 Image upgrade initiated by a host communicating directly with the bootloader using SPI/
I2C/UART

Image upgrade using the OTA (Over the air) functionality built in to the main application

This section covers the image upgrade directly using the bootloader. OTA upgrade is described
in Section 7 Over the Air (OTA) Upgrade on page 23.

Multi-Protocol Bootloader implements a message based protocol to allow host to control the
bootloader behavior and also allows upgrading the image on the flash. Each message is identi-
fied by a 4 byte command, followed by command dependent message contents.

Multi-Protocol Bootloader supports connectivity to an external host using SPI, I2C or UART. The
physical signaling used by the bootloader changes slightly depending on the interface used.
The following sections show how commands can be sent to the bootloader over various serial
protocols.

4.1 SPI Boot Protocol

The Multi-Protocol Bootloader is designed to use a simple SPI based protocol. The
Apollo or Apollo2 device operates as a slave, and can send messages back to a host
processor with the help of a dedicated interrupt line.

4.1.1 SPI Command Format

Bootloader commands are sent in two separate SPI frames. The first SPI frame
starts with 0x84, and contains the command parameters. The second SPI frame
starts with 0x80, and contains the command word. The boot slave will execute the

Apollo MCU Multi-Protocol Bootloader Application Note Image Update

Confidential and Proprietary 13 A-MCUAP3-ANGA02EN v1.0

command immediately after CS returns to logic HIGH at the end of the second SPI
frame.

The following diagrams show the command format:

Figure 4-1: Parameter Frame

Figure 4-2: Command Frame

4.2 I2C Boot Protocol

The Multi-Protocol Bootloader is designed to use a simple I2C-based protocol. The
Apollo or Apollo2 device operates as a slave, and can send messages back to a host
processor with the help of a dedicated interrupt line.

4.2.1 I2C Command Format

The I2C command format is similar to SPI. First, the host sends a parameter frame
starting with the slave address and the byte 0x84. Second, the host must send the
command frame, which starts with the slave address and the byte 0x80. Both com-
mands and parameters are 32-bits long, and should be sent Least Significant Byte
first.

NOTE: If a command has no parameters, the host processor does not
need to send a parameter frame.

NOTE: If a command has no parameters, the host processor does not
need to send a parameter frame..

Apollo MCU Multi-Protocol Bootloader Application Note Image Update

Confidential and Proprietary 14 A-MCUAP3-ANGA02EN v1.0

Figure 4-3: I2C Command Format

4.3 UART Boot Protocol

The Multi-Protocol Bootloader can also use a serial UART interface to connect to
the host. The Rx and Tx serial Data is then used to transmit and received the boot-
loader messages.

4.3.1 UART Command Format

UART commands are very straightforward. They do not require multiple frames,
additional overhead bytes, or INTERRUPT signaling because the slave is full-duplex.
Each command or parameter is 32-bits long, sent LSB first.

Figure 4-4: UART Command Format

4.4 Supported Commands

This section describes commands currently supported by the Multi-Protocol Boot-
loader. Any command words not listed in this section are reserved for future com-
mands.

4.4.1 Command 0x00000000: ACK

Acknowledge a message from the boot slave. This command has no response.

Parameters: None

4.4.2 Command 0x00000002: New Image

Send this command to start a new image. This command does not support any
encryption. It is used to download firmware from a plain (non-secure) binary. The

Apollo MCU Multi-Protocol Bootloader Application Note Image Update

Confidential and Proprietary 15 A-MCUAP3-ANGA02EN v1.0

host should wait for a response of READY or ERROR before sending additional
packets.

4.4.3 Command 0x00000003: New Data Packet

This command is used to transfer binary data from the host to the slave. Send this
command after a New Image packet to transfer the actual binary. The same com-
mand is used for both secure and non-secure downloads. The host should wait for
a response of READY before sending additional packets.

The maximum length of the binary data that can be carried in one packet is
restricted based on the underlying physical medium. When using I2C/SPI, it is
restricted to 112 Bytes.

4.4.4 Command 0x00000004: Reset and Run

Commands the slave to execute the newly downloaded image. Send this after
receiving an IMAGE_COMPLETE message from the slave if the slave should start
running the new image.

This command also causes the slave device to save the image information to its
internal “flag page”. This means that it will run the downloaded image on every
power-up instead of starting the bootloader.

This command will have no response.

Parameters: None

Table 4-1: New Image Parameters

Parameter # Description Example Value Notes

0 Link Address 0x00008000

1 Image Size 0x000004C0 (1216 bytes)

2 Image CRC 0xE5D761C0

Table 4-2: New Data Packet Parameters

Parameter # Description Example Value Notes

0 Data Length (bytes) 0x00000020 Length in bytes of binary data that
follows

1 - N Image Size 0x000004C0 (1216 bytes)

Apollo MCU Multi-Protocol Bootloader Application Note Image Update

Confidential and Proprietary 16 A-MCUAP3-ANGA02EN v1.0

4.4.5 Command 0x00000005: Set Override Pin

This optional command may be used at any time between a New Image command
and a Reset and Run command to set the BOOT-Override pin behavior. On later
reset events, the host can use the BOOT-Override pin to force an image upgrade
instead of running the image in the flash.

The host should wait for a response of READY before sending additional packets.

4.4.6 Command 0x00000006: Bootloader Version

The host may use this command to check the bootloader version number. Ambiq
will update this number for future bootloader releases. The host should wait for a
response before sending additional commands.

Parameters: None

4.5 Response Formats

During the boot process, the Bootloader slave will sometimes send messages back
to the host. Each message will start with the slave asserting the INT pin. When this
happens, the host should start a new SPI or I2C frame in the following format. The
slave message will always be 4 bytes long. After receiving a message from the
slave, the boot host should send an ACK packet. This ensures that the INT line
returns to the inactive state before the next command starts.

Figure 4-5 shows a SPI slave message followed by a host ACK frame:

Figure 4-5: SPI Slave Message Followed by a Host ACK Frame

Table 4-3: Set Override Pin Parameters

Parameter # Description Example Value Notes

0 Override GPIO 12 GPIO number for the new Boot pin

1 Override Polarity 0x0 0x0: Active LOW, 0x1: Active HIGH

Apollo MCU Multi-Protocol Bootloader Application Note Image Update

Confidential and Proprietary 17 A-MCUAP3-ANGA02EN v1.0

This image shows an I2C slave message. Please note the repeated-start condition.
For the I2C case, the “Host ACK” packet (not shown) is also a command packet
where the command word is 0x00000000.

Figure 4-6: I2C Slave Message

4.5.1 Supported Slave Responses

There are the currently supported slave messages. Ambiq may add additional mes-
sages in future versions of the bootloader.

4.6 Pin Configuration for Connectivity with Host

Figure 4-5 lists the Pins used for the I2C/SPI Slave operation. INT pin is configurable,
and the value shown below is just a sample value.

Table 4-4: Supported Slave Responses

Message Encoding Description

READY 0x00000000 Ready for additional packets.

ERROR 0x00000005 Error. Start over with New Image packet.

IMAGE_COMPLETE 0x00000003 Received all data bytes, CRC is correct.

BAD_CRC 0x00000004 Received all data bytes, but CRC is incorrect.
Start over.

BL_VERSION (hex version number) Corresponds to bootloader version number.

Table 4-5: Pins Used for the I2C/SPI Slave Operation

GPIO Number SPI Function I2C Function

0 SCK SCL

1 MISO SDA

2 MOSI -

3 nCE -

4 INT INT

Apollo MCU Multi-Protocol Bootloader Application Note Image Update

Confidential and Proprietary 18 A-MCUAP3-ANGA02EN v1.0

For UART, multiple options are possible by configuring the Pads accordingly. Fol-
lowing is a non-comprehensive list of possible options.

4.7 Override Pin and the Protocol Selection

The first action the bootloader should take immediately on startup is override pin
detection. In normal operation, if the bootloader detects a valid application in flash
memory that matches the CRC located in the Flag Page, it will automatically run
that image. The Override or BOOT pin is a way to tell the bootloader that it should
prepare to receive a new application instead of running the old application.

The bootloader will look for the override pin very early in the startup procedure. If
the override pin is in the “active” state (configured in the last “Set Override Pin”
command), the bootloader will configure its serial interfaces and wait for a new
application image from the host.

When boot override is in effect, or if there is no image in flash, bootloader puts
itself in a forced upgrade mode. In this mode, a host connection is expected to
download a new image.

When the slave processor first boots up, it will configure pin 0 as an input to deter-
mine whether it should use SPI or I2C mode. If pin 0 is LOW at boot, the bootloader
will use SPI (Mode 0). If pin 0 is high, it will use I2C.

A bootloader could be implemented such that if no activity is detected from host
on the SPI/I2C for a short time, bootloader assumes UART as the connection mode.

If enabled for baudrate auto-detect, when host first connects to the slave, it is
expected to send one byte 0x55 to the slave. Slave uses this known pattern to
auto-detect the UART baudrate.

Table 4-6: Options for Configuring the Pads

GPIO Number UART Function

35 TX (Apollo only)

36 RX (Apollo only)

22 TX (Apollo2 using UART0)

23 RX (Apollo2 using UART0)

39 TX (Apollo2 using UART1)

40 RX (Apollo2 using UART1)

Confidential and Proprietary 19 A-MCUAP3-ANGA02EN v1.0

SECTION

5 Boot Procedure

Following describes the boot procedure when using the multi_boot example application sup-
plied with the SDK. In order to download an image to an Apollo device, the host processor will
need to perform the following steps in order:

1. Reset the Apollo or Apollo2 device holding the BOOT pin in the active state if applicable.
The first boot-up will not require a BOOT pin to start the download process.

2. Wait for the Apollo or Apollo2 boot slave to send a READY signal.

3. If a BOOT pin is needed for a future update (e.g., after this new application is programmed
into flash), the host must send a Set Override Pin command at this time. (Most applica-
tions will require this)

4. Send a NEW_IMAGE packet containing the appropriate image parameters, and wait for a
READY packet in response.

5. Send NEW_DATA_PACKET commands containing the actual binary to be programmed.
Wait for a READY packet in response to each NEW_DATA_PACKET.

6. After the last data packet, the slave should send an IMAGE_COMPLETE packet

7. Send a RESET_AND_RUN packet to execute the new firmware image.

5.1 Multi-Segment Images

If the main application image is divided into separate individual segments, each
segment is programmed by sending a NEW_IMAGE command, followed by a
series of NEW_DATA_PACKET commands.

The last segment to be programmed should correspond to the main image entry
point to which the bootloader passes execution control to. RESET_AND_RUN
command should follow the last segment programming.

Confidential and Proprietary 20 A-MCUAP3-ANGA02EN v1.0

SECTION

6 Secure Image Upgrade

For deployments requiring enhanced security, a secure version of the Multi-Protocol Boot-
loader can be used. This is provided as a build option in AmbiqSuite SDK.

For this purpose, the New Image command is extended as follows.

The contents of the Security Trailer and the Secure Image depends on the implementation
choice and security requirements of individual vendors.

For example, if Image Confidentiality and Authentication is a requirement, this protocol can be
used to send an encrypted image to the bootloader. The Security trailer can be customized to
include necessary information for successful decryption and authentication of the image (e.g.,
key-index, initialization vector, signature etc.).

The Ambiq Multi-Protocol Bootloader provides a flexible framework, which can be customized
to suit individual security needs like Authentication, Encryption etc. Customization is imple-
mented by means of security function hooks, which can be implemented as a plugin compo-
nent to create a secure bootloader.

Table 6-1: Secure Image Upgrade

Parameter # Description Example Value Notes

0 Link Address 0x00008000

1 Image Size 0x000004C0
(1216 bytes)

The image can be encrypted if image confiden-
tiality is desired

2 Image CRC 0xE5D761C0 (Calculated over the encrypted bytes)

3 Security Trailer Size Variable Size of the Security trailer that follows this field

Rest of the
Payload

Security Trailer Variable The contents of this trailer can be customized
to suit individual security needs like Authenti-
cation, Encryption etc.

Apollo MCU Multi-Protocol Bootloader Application Note Secure Image Upgrade

Confidential and Proprietary 21 A-MCUAP3-ANGA02EN v1.0

AmbiqSuite SDK includes a sample (though cryptographically insecure) implementation of this
plugin to demonstrate the concept. This example is designed to demonstrate the framework
which can be extended by the customer to integrate more secure algorithms.

6.1 Customizable Security Functions

Secure build of Multiboot provides following function hooks that can be imple-
mented to suit specific deployment needs.

6.1.1 Initialization

Multiboot calls this function as part of processing the NEW_IMAGE message.

int
init_multiboot_secure(uint32_t length, uint32_t *pData,
 bool bStoreInSram,
 am_bootloader_image_t *psImage,
 uint32_t *pProtect);

This function could be implemented to verify the security trailer itself, and initialize
the security engine. It could also be used to verify the validity of the key used for
encryption. It returns 0 if the verification succeeds.

6.1.2 Decryption

Multiboot calls this function as part of processing the NEW_DATA_PACKET mes-
sage after accumulating enough data to correspond to one flash page size (or less
if this is the last segment of the image).

void
multiboot_secure_decrypt(void *pData, uint32_t ui32NumBytes);

Table 6-2: Initialization Parameter Description

Parameter Description

Length Length of the security trailer

pData Pointer to the security trailer

bStoreInSram Indicates if the image can be accumulated in SRAM as a whole. If not
set, multi boot would need to keep flashing the image segments as
they arrive overwriting the existing content, even before the image
could be verified.

psImage Pointer to the image properties as operated upon by multiboot

pProtect Used to pass information back to multiboot, if the flashed image
needs any protection features. This is a place holder for future.

Apollo MCU Multi-Protocol Bootloader Application Note Secure Image Upgrade

Confidential and Proprietary 22 A-MCUAP3-ANGA02EN v1.0

This function should implement an in-place decryption of the data using the
selected security algorithm. The decryption engine should have been initialized as
part of init_multiboot_secure implementation. This function should also com-
pute the running CRC for the clear image.

6.1.3 Verification

Multiboot calls this function after processing the last image segment and making
sure the CRC verification across the encrypted image was successful.

int
multiboot_secure_verify(uint32_t *pui32ClearCRC);

This function could implement additional verification or authentication of the
downloaded (and decrypted) image. It returns 0 if the verification succeeds. On
successful verification, and if the image did not need copy-protection in flash, it
also returns the CRC of the clear image in flash, so that on subsequent boots the
bootloader can check the image for integrity.

Table 6-3: Decryption Parameter Description

Parameter Description

pData Pointer to encrypted image data in SRAM

ui32NumBytes Length of data

Table 6-4: Verification Parameter Description

Parameter Description

pui32ClearCRC Pointer used to return the CRC of the clear image (unless it is marked
Copy-Protected)

Confidential and Proprietary 23 A-MCUAP3-ANGA02EN v1.0

SECTION

7 Over the Air (OTA) Upgrade

For production devices, it is likely that there would be need to support image upgrades with-
out requiring direct physical connection to host. Multi-Protocol Bootloader can be built to sup-
port OTA upgrades.

It is up to the user application to implement a mechanism to remotely connect to the host and
download image assets to the flash storage. This section only details the interface of the OTA
application to the multiboot & the OTA procedure itself.

When enabled, Multiboot checks for availability of a new image via OTA application (e.g. by
checking the value at a well-defined location in the flash. Exact mechanism for this notification
is customizable). The data structure used to communicate information between the OTA appli-
cation and the multiboot resembles closely with the content of the NEW_IMAGE command
described previously.

Apollo MCU Multi-Protocol Bootloader Application Note Over the Air (OTA) Upgrade

Confidential and Proprietary 24 A-MCUAP3-ANGA02EN v1.0

In order to support devices with limited free flash space, the OTA upgrade mechanism also sup-
ports reading the image from external flash by providing customization hooks to enable
accessing a third party flash device during the upgrade process.

Multiboot validates the OTA image and installs the same similar to the wired updates through
a host.

If enabled for secure boot, the OTA upgrade process calls appropriate security function hooks
through the upgrade process to enable implementation of security features.

Confidential and Proprietary 25 A-MCUAP3-ANGA02EN v1.0

SECTION

8 Multiboot Customization

Multi-Protocol Bootloader supplied as part of AmbiqSuite is designed for flexibility. The core
protocol functionality is implemented as a set of helper functions part of core AmbiqSuite, and
it is expected that individual deployments would implement their own bootloader application
using these core functions.

Standard AmbiqSuite SDK contains sample example projects for both the secure and non-
secure version of bootloader.

NOTE: Current implementation of multiboot helper functions assume that all the
SRAM and Flash in the chip has been powered up, even if the program needs to use
only a part of it. For flash, this is needed to allow a new image to be flashed in at any
location in the flash. The SRAM area beyond the region used for the program (as
indicated by MAX_SRAM_USED below), is used as a scratch space by multiboot.
The user application needs to make sure that unused flash and SRAM regions are
not powered off.

Apollo MCU Multi-Protocol Bootloader Application Note Multiboot Customization

Confidential and Proprietary 26 A-MCUAP3-ANGA02EN v1.0

8.1 Compile Time Constants

These constants can be overridden by a particular bootloader implementation for
multiboot customization.

//

//
// Secure Boot.
//
//

#define MULTIBOOT_SECURE
//

//
// Run with flag page.
//
//

#define USE_FLAG_PAGE 1
//

//
// Location of the flag page.
//
//

#define FLAG_PAGE_LOCATION 0x00006000
//

//
// Max Size of Bootloader.
//
//

// The value here must match (at least) with the ROLength restriction imposed
at
// bootloader linker configuration
#define MAX_BOOTLOADER_SIZE 0x00006000
// The value here must match (at least) with the RWLength restriction imposed
at
// bootloader linker configuration
#define MAX_SRAM_USED 0x00008000
//

//
// I2C Address to use
//
//

#define I2C_SLAVE_ADDR 0x10

Apollo MCU Multi-Protocol Bootloader Application Note Multiboot Customization

Confidential and Proprietary 27 A-MCUAP3-ANGA02EN v1.0

8.2 Helper Functions

8.2.1 Check for Override Status and Flash Image Validity

Bootloader implementation should call this function at the beginning.

bool
am_multiboot_check_boot_from_flash(bool *pbOverride,
am_bootloader_image_t **ppsImage)

This function checks the flag page (if enabled) and verifies the flash image for
integrity. It also checks for the override pin status in case forced host boot is
requested. Returns true, if it is okay to boot from the image in flash, and passes the
Image structure back to the caller.

8.2.2 Run Image

Bootloader implementation should call this function to run the image as per the
image information provided.

void
am_bootloader_image_run(am_bootloader_image_t *psImage)

This function can be used to run a program that has already been downloaded and
written to flash. It does this by reading the initial stack-pointer and reset vector
information from the image written in flash, writing that information to the rele-
vant registers, and immediately branching to the new reset vector location.

Note that this method does not include any type of reset. It is the caller’s responsi-
bility to ensure that the MCU is in a valid state for the subsequent program to run.
One way to guarantee this is to run this function very early after a RESET event,
before clocks or peripherals are configured.

Table 8-1: Check for Override Status and Flash Image Parameter Description

Parameter Description

pbOverride return parameter, used to pass back the override status

ppsImage return parameter, used to pass back the image structure

Table 8-2: Run Image Parameter Description

Parameter Description

psImage Pointer to the image structure

Apollo MCU Multi-Protocol Bootloader Application Note Multiboot Customization

Confidential and Proprietary 28 A-MCUAP3-ANGA02EN v1.0

8.3 Image Upgrade Over IOS/UART

8.3.1 Initialize Multiboot

This function should be called to provide multiboot with the scratch memory in
SRAM.

bool
am_multiboot_init(uint32_t *pBuf, uint32_t bufSize)

This function should be called for both IOS or UART based image upgrade. The
function returns failure if the buffer provided is not sufficient.

8.3.2 Upgrade Over IOS

8.3.2.1 Setup IOS Interface

This function should be called to set up the IOS interface for connecting with host.

void
am_multiboot_setup_ios_interface(uint32_t interruptPin);

This function auto-detects for SPI or I2C based on the clock pin signal level.

8.3.2.2 Cleanup IOS Interface

In case of bootloader enabling multiple interfaces to boot from (e.g., UART), this
function is used to clean up the IOS configuration before switching to alternate
interfaces.

void
am_multiboot_cleanup_ios_interface(void)

Table 8-3: Initialize Multiboot Parameter Description

Parameter Description

pBuf This is the temporary buffer for multiboot to operate on.

bufSize Temporary buffer size. This should be at least equal to the AM_HAL_-
FLASH_PAGE_SIZE

Table 8-4: Setup IOS Interface Parameter Description

Parameter Description

interruptPin Handshake pin to be used for interrupting host

Apollo MCU Multi-Protocol Bootloader Application Note Multiboot Customization

Confidential and Proprietary 29 A-MCUAP3-ANGA02EN v1.0

This function un-configures the IOS interface.

8.3.2.3 IOS Interrupt Handler

This function implements the core multiboot data transfer & control protocol over
the IOS interface. Bootloader implementation should call this function from the
IOS ACC interrupt handler.

void
am_multiboot_ios_acc_isr_handler(void);

8.3.3 Image Upgrade Over UART

8.3.3.1 AutoDetect Baudrate

If desired, this helper function can be used to autodetect the baud rate host is
using. When host first connects to the slave, it is expected to send one byte 0x55 to
the slave. Slave uses this known pattern to auto-detect the UART baudrate.

uint32_t
am_multiboot_uart_detect_baudrate(uint32_t ui32RxPin);

This function returns the detected baudrate.

8.3.3.2 Setup Serial Interface

This function should be called to set up the UART interface for connecting with
host.

void
am_multiboot_setup_serial(int32_t i32Module, uint32_t ui32BaudRate);

8.3.3.3 UART Interrupt Handler

This function implements the core multiboot data transfer & control protocol over
the UART interface. Bootloader implementation should call this function from the
respective UART interrupt handler.

void
am_multiboot_uart_isr_handler(uint32_t ui32Module);

Table 8-5: Setup Serial Interface Parameter Description

Parameter Description

i32Module UART module to use

ui32BaudRate Desired baudrate

Apollo MCU Multi-Protocol Bootloader Application Note Multiboot Customization

Confidential and Proprietary 30 A-MCUAP3-ANGA02EN v1.0

8.4 OTA Image Upgrade

8.4.1 External Flash Access Hooks

This structure is used by the caller to provide core multiboot functions means to
access external flash, if desired for OTA upgrade.

// All functions return 0 on success
typedef int (*flash_read_func_t)(uint32_t ui32DestAddr, uint32_t *pSrc, uint32_t
ui32Length);
typedef int (*flash_write_func_t)(uint32_t ui32DestAddr, uint32_t *pSrc, uint32_t
ui32Length);
typedef int (*flash_erase_func_t)(uint32_t ui32Addr);
typedef int (*flash_init_func_t)(void);
typedef int (*flash_deinit_func_t)(void);
typedef int (*flash_enable_func_t)(void);
typedef int (*flash_disable_func_t)(void);

typedef struct
{
 // Minimum Granularity for Write
 // Should be power of 2
 uint32_t flashPageSize;
 // Minimum Granularity for Erase
 // Should be power of 2
 uint32_t flashSectorSize;
 // Initialize the flash device
 flash_init_func_t flash_init;
 // De-Initialize the flash device
 flash_deinit_func_t flash_deinit;
 // Enable (Power up) the flash device
 flash_enable_func_t flash_enable;
 // Disable (Put in Low power mode) the flash device
 flash_disable_func_t flash_disable;
 // Read a block of data from within a flash page
 flash_read_func_t flash_read_page;
 // Read a block of data within a flash page
 flash_write_func_t flash_write_page;
 // Erase the flash sector corresponding to address specified
 flash_erase_func_t flash_erase_sector;
} am_multiboot_flash_info_t;

typedef void (*invalidate_ota_func_t)(am_multiboot_ota_t *pOtaInfo);

Table 8-6: UART Interrupt Handler Parameter Description

Parameter Description

i32Module UART module to use

Apollo MCU Multi-Protocol Bootloader Application Note Multiboot Customization

Confidential and Proprietary 31 A-MCUAP3-ANGA02EN v1.0

8.4.2 OTA Upgrade Helper Function

This function validates the OTA blob, and installs the image if verified. It updates
the flag page with the new image information and issues a POI.

Bootloader should call this function on detecting a valid OTA upgrade image.

bool
am_multiboot_ota_handler(am_multiboot_ota_t *pOtaInfo,
 uint32_t *pTempBuf, uint32_t tmpBufSize,
 invalidate_ota_func_t invalidateOtaFunc,
 am_multiboot_flash_info_t *pExtFlash);

The function return false if OTA upgrade fails. Otherwise this function does not
return.

x

x

x

For production devices, it is likely that there would be need to support image
upgrades without requiring direct physical connection to host. Multi-Protocol
Bootloader can be built to support OTA upgrades.

It is up to the user application to implement a mechanism to remotely connect to the host and
download image assets to the flash storage. This section only details the interface of the OTA
application to the multiboot & the OTA procedure itself.

When enabled, Multiboot checks for availability of a new image via OTA application (e.g. by
checking the value at a well-defined location in the flash. Exact mechanism for this notification
is customizable). The data structure used to communicate information between the OTA appli-
cation and the multiboot resembles closely with the content of the NEW_IMAGE command
described previously.

Table 8-7: OTA Upgrade Helper Function Parameter Description

Parameter Description

pOtaInfo Pointer to OTA descriptor with image information

pTempBuf Pointer to a temporary buffer. This buffer should be sized to mini-
mum one flash sector (bigger of internal and external flash page, if
ext flash is being used)

tmpBufSize Size of the temporary buffer

invalidateOtaFunc Pointer to function called to invalidate the OTA for subsequent boots

pExtFlash Pointer external flash access info, if needed

Apollo MCU Multi-Protocol Bootloader Application Note Multiboot Customization

Confidential and Proprietary 32 A-MCUAP3-ANGA02EN v1.0

In order to support devices with limited free flash space, the OTA upgrade mechanism also sup-
ports reading the image from external flash by providing customization hooks to enable
accessing a third party flash device during the upgrade process.

Multiboot validates the OTA image and installs the same similar to the wired updates through
a host.

If enabled for secure boot, the OTA upgrade process calls appropriate security function hooks
through the upgrade process to enable implementation of security features.

Confidential and Proprietary 33 A-MCUAP3-ANGA02EN v1.0

SECTION

9 Appendix

9.1 Downloading a New Image Using Multi-Protocol
Bootloader Supplied with AmbiqSuite
AmbiqSuite includes a Multi-Protocol bootloader example, which can be custom-
ized to suit specific needs to implement a bootloader for final project.

This section details how to use the supplied Multi-Protocol Bootloader.

9.1.1 Multi-Boot

This is the bootloader to be flashed on to the target board at address 0x0

It checks for a valid image in the flash, and if not found (or when using optional
flag page, if the checksum validation fails) waits for host to download a new
image

– It can be forced to upgrade an image even if a valid image is present by
using BOOT-OVERRIDE pin

When doing the image download, it first checks for image download through
I2C/SPI (it auto-detects the mode based on level setting of the clock pin)

 If host does not send image on I2C/SPI, it then switches to UART after a brief
wait

Once the device has multi-boot bootloader flashed in, the main firmware image
can be upgraded using an external host, connected to the device using I2C/SPI or
UART.

Apollo MCU Multi-Protocol Bootloader Application Note Appendix

Confidential and Proprietary 34 A-MCUAP3-ANGA02EN v1.0

9.1.2 Image Upgrade Over I2C/SPI Using Another Ambiq Evaluation
Board

AmbiqSuite supplies example programs - i2c_boot_host and spi_boot_host
respectively, which can be run on a separate board acting as a host to down-
load a new image to the target using I2C/SPI.

– Both these programs have been compiled with pre-built binary image (con-
verted to a header file apollo*_boot_demo.h) representing the example
binary_counter

– When using optional pins to drive the RESET and OVERRIDE pins, the host
can force a new image download to the target

Pin Fly lead assumptions for default programs

//! PIN fly lead connections assumed by multi_boot:
//! HOST SLAVE (multi_boot target)
//! -------- --------
//! GPIO[2] GPIO Interrupt (slave to host) GPIO[4] GPIO interrupt
//! GPIO[4] OVERRIDE pin (host to slave) GPIO[18] Override pin or n/c
//! GPIO[5] IOM0 SPI CLK/I2C SCL GPIO[0] IOS SPI SCK/I2C SCL
//! GPIO[6] IOM0 SPI MISO/I2C SDA GPIO[1] IOS SPI MISO/I2C SDA
//! GPIO[7] IOM0 SPI MOSI GPIO[2] IOS SPI MOSI
//! GPIO[11] IOM0 SPI nCE GPIO[3] IOS SPI nCE
//! GPIO[17] Slave reset (host to slave) Reset Pin or n/c
//! Reset and Override pin connections from Host are optional
//! Keeping Button1 pressed on multi-boot target has same effect as host
driving
//! override

Creating a header file from a binary image to be flashed

– The bin file suitable for download like this needs to be created with start
address 0x8000 or higher (Set ROBase to 0x8000 or higher in linker file).

– Use the AmbiqSuite script pack_for_boot.py to generate a header file cor-
responding to the image
pack_for_boot.py -o <header file name> -l <link address> <bin file>
Here bin file is the desired binary firmware image file (needs to be built

with link address 0x8000 or higher)
Link Address is a hex number indicating the link address used for the

image file
– Once generated, it can be edited to match the requirements of

apollo*_boot_demo.h

The host programs i2c_boot_host and spi_boot_host can be rebuilt with the
new header files as replacements.

Apollo MCU Multi-Protocol Bootloader Application Note Appendix

Confidential and Proprietary 35 A-MCUAP3-ANGA02EN v1.0

9.1.3 Image Upgrade Over UART

When using UART boot, a command line script included in AmbiqSuite can be used
to accomplish the host side functionality.

Note that this script relies on add-on packages for python, namely serial and
pycryptodome that needs to be installed using pip install <packagename>

tools\bootloader_scripts\uart_boot_host.py <bin file> <link address> COM??

Here bin file is the desired binary firmware image file (needs to be built with
link address 0x8000 or higher)

link Address is a hex number indicating the link address used for the image file

 Replace “COM??” with the COM port on the host machine connected to the
UART on the device.

9.1.4 Secure Boot

AmbiqSuite also provides a sample implementation of the secure version of Multi-
Boot with provisions for Image confidentiality and Authentication and Integrity
Verification along with other optional security features.

Currently AmbiqSuite provides mechanisms to exercise the secure boot over UART
only.

When using the secure boot, a set of command line scripts included in AmbiqSuite
can be used to accomplish the host side functionality.

Secure implementation of multi-boot is designed to be customized to suit individ-
ual deployment requirements. AmbiqSuite SDK contains a sample secure boot
implementation to demonstrate the concept, and does not implement cryp-
tographically secure methods. Even though the overall image upgrade procedure
would follow the outline described below, the generation of secure boot assets
need to be customized in accordance with the specific secure boot implementa-
tion.

As with non-secure boot case, the desired image file needs to be built with link
address 0x8000 or higher

 There is one extra step to generate encrypted image and the security trailer.
generate_secureboot_assets.py can be found in the multi_boot_secure
project.

.\ generate_secureboot_assets.py <bin file> <keyidx> <protection>
<encimagefilename> <sectrailerfilename>

Apollo MCU Multi-Protocol Bootloader Application Note Appendix

Confidential and Proprietary 36 A-MCUAP3-ANGA02EN v1.0

– keyidx identifies the key to use. The script should be pre-populated with
the keys matching the bootloader implementation.
The sample secure implementation uses 8 4-byte keys, and hence this

can be any value 0,1,2,3,4,5,6,7
The sample secure bootloader implementation marks the key 6 as

“revoked” as illustration
– protection – designed to provide image protection requirement (Write-

Protect, Copy-Protect). Currently this is not implemented, and hence only 0
is a valid value

– This generates two binary files – “encrypted image file” and “security trailer”
as needed for the script uart_boot_host.py for the second step.

 The same uart_boot_host.py script can be used to interface with the secure
multi-boot using additional parameters

tools\bootloader_scripts\uart_boot_host.py <encimagefilename>
<link address> COM?? –s <sectrailerfilename>

– encimagefilename and sectrailerfilename represent the secureboot
assets generated in the previous step

© 2022 Ambiq Micro, Inc. All rights reserved.
6500 River Place Boulevard, Building 7, Suite 200, Austin, TX 78730

www.ambiq.com
sales@ambiq.com
+1 (512) 879-2850

A-MCUAP3-ANGA02EN v1.0
April 2022

	Introduction
	Memory Map
	Verification of Flash-Resident Image
	Image Update
	4.1 SPI Boot Protocol
	4.1.1 SPI Command Format

	4.2 I2C Boot Protocol
	4.2.1 I2C Command Format

	4.3 UART Boot Protocol
	4.3.1 UART Command Format

	4.4 Supported Commands
	4.4.1 Command 0x00000000: ACK
	4.4.2 Command 0x00000002: New Image
	4.4.3 Command 0x00000003: New Data Packet
	4.4.4 Command 0x00000004: Reset and Run
	4.4.5 Command 0x00000005: Set Override Pin
	4.4.6 Command 0x00000006: Bootloader Version

	4.5 Response Formats
	4.5.1 Supported Slave Responses

	4.6 Pin Configuration for Connectivity with Host
	4.7 Override Pin and the Protocol Selection

	Boot Procedure
	5.1 Multi-Segment Images

	Secure Image Upgrade
	6.1 Customizable Security Functions
	6.1.1 Initialization
	6.1.2 Decryption
	6.1.3 Verification

	Over the Air (OTA) Upgrade
	Multiboot Customization
	8.2.1 Check for Override Status and Flash Image Validity
	8.2.2 Run Image
	8.3 Image Upgrade Over IOS/UART
	8.3.1 Initialize Multiboot
	8.3.2 Upgrade Over IOS
	8.3.3 Image Upgrade Over UART

	8.4 OTA Image Upgrade
	8.4.1 External Flash Access Hooks

	Appendix
	9.1 Downloading a New Image Using Multi-Protocol Bootloader Supplied with AmbiqSuite
	9.1.1 Multi-Boot
	9.1.2 Image Upgrade Over I2C/SPI Using Another Ambiq Evaluation Board
	9.1.3 Image Upgrade Over UART
	9.1.4 Secure Boot

